CHAPTER 1

Algorithms
(Analysis and Design)

11 PROBLEM SOLVING

In order t0 solve a problem using computer, one needs to write step by step solution first.
This may be done by writing simple instructions for each operation. There might be a number
of methods _EQ,S,Qb’*e_th&prlegz_m_ggd hence solutions will differ from person to person. How-
over, inall cases, basic steps for solving a problem would remain the same. These steps are:

.. Formulating the problem and deciding the data types to be entered. v

p. Identifying the steps of computation that are necessary for getting the solution.
Identifying decision points i.e., under what circumstances a particular operation is to be
performed and when not to be carried out. ‘

d. Finding the result and verifying the values.

1.1.1 Procedure for Problem Solving

Problem solving is simply writing the basic steps and putting them in correct sequence to
find the result.

C.

& (Problem solving is a logical process of breaking down the problem into smaller parts each of
which can be solved step by step to obtain the final solution. >

Though, every problem may be unique in itself, yet the procedures for solving such prob-
lems are similar. The procedure for solving a problem involves six steps. These steps should
be understood thoroughly and practiced effectively. Using these steps, our problem solving
capability will improve with time.

Six basic steps in solving a problem are: .
& First, spend some time in understanding the problem. In this step, you are not required
to use a computer. Instead, you should try to answer the question namely, what is
expected and how to get it. This means, try to formulate a problem correctly.
Construct a list of variables that are needed to find the solution of the problem.
Decide the layout for the output.
Select a programming method best suited to solve the problem and then only carryout
the coding, using a suitable programming language. -
Test the program. Select test data so that each part of the program would be checked for
Correctness.

Lo Sl S

Scanned with CamScanner

2 Data Structures

—

~ 6. Finally use data validation steps to guard against processing of wrongly inputted data,
All these six steps are further elaborated in the following sections.

Step 1. Understanding the Problem

v Read each statement given in the problem carefully, so that you can answer the first question
"What is expected by solving the problem?" Do not start drawing a flowchart or decision table
straight away. Instead, read each statement of the problem slowly and carefully, by under-
standing the keywords. Use paper and pencil to solve the problem manually for some test
data. Let us understand this point by solving the problem given in Example 1. "~

Example 1 Accept a value M and find the sum of first M even integers.

/ Solution The solution of this problem requires you to take an input value, say a number 6 is
given as the value of M. Then, you should get the sum of first 6 even integers. In the first step,
you should be able to answer the following two questions:

"What are the first 6 even integers?"

These are 2, 4, 6, 8, 10, and 12.

"What is their sum?"
The sum is 42. Hence, the solution is to be so made that the sum of first 6 even integers comes
out to be 42.

w Step 2. Construction of the List of Variables
~In this step, you should think in advance the number of variables along with the names of the
variables. The names chosen for the variables should be an aid to memory. For example, in
the case of the problem stated in step 1 above, the variables may be, I, SUM and COUNT as
given below. e~
\- 1. Generate even integers 2, 4, 6,...(I)
-2, Total the sum of even integers2 +4 + 6 + ... (SUM)
. 3. Count the number of even integers, i.e. 1,2, 3,... (COUNT)
 Thus, it is clear that we need to use the above three variables and one more variable "M"
whose value will be inputted by the user of the program from the keyboard. Finally, the four

variables for this problem would be:

/ M to be entered by the user.
s I to generate even integers.
COUNT to keep a track of the number of even integers that have been summed.
P - SUM An accumulator that will hold the current total value of even integers.
L/ Step 3. Output Design :

Many A times, the ‘output’ format is specified in the problem itself, but sometimes, it may not
be so. If the output format is not specified, we must keep in mind that the output report
should be easily understandable by a reader. The headings should not cause any doubt or

confusion in the mind of a reader. _ |
In the solution of Example 1, the output format could be as follows:

Scanned with CamScanner

Algorithms (Analysis and Design) 3

e No. of first even integers Total sum

6 42
You should keep one more point in mind. The programs and the solution to a problem are
for other people (teachers, supervisors, contractors, etc). They will appreciate you only if they

can understand the results and analyse them. Hence, the output format should have the
following characteristics: ,

a. Attractive, 1‘ }
b, Easytoread and N\ o
c. Self-explanatory. /

step 4. Program Development

You should now draw a flowchart for the procedure that you have just made in steps 1, 2 and
3, StYandarcLsymbols should be used for drawing a flowchart. If a problem is complex, you
should divide it into several simpler parts. Then, draw a flowchart for each part separately
and combine them together using connectors.

A flowchart for the problem in Example 1 is drawn as shown in Figure 1.1." ol
Now write the code in the prescribed high level language to translate the flowchart into a
program. .

_-~Step 5. Testing the Program

You should give a dry run to the developed program that translates the flowchart of step 4.
This means by giving known values to the variables and by checking the result and thus
comparing results with manually calculated values. Test values are so selected that each part
of a flowchart is tested and the program is free from any logical errors. B

vlep 6. Validating the Program

Itis quite likély that the user of your program may enter values, which are not expected by
the program. Such values should be rejected by the procedure drawn by you. This is known
as validation of data. For example, in the problem of Example 1, in step 1 we may give some
upper limit to the value of "M and state that "M" should be an integer value. Such types of
checks can be included to validation a program. '

112 Problem Definition and use of Examples for Problem Solving

Let us take another example of a problem faced in day-to-day life. Suppose you want to reach
your college computer laboratory at 8 AM. You would lay out a plan to get ready by 7 AM,
then take 5 bus/rikshaw and reach at the gate of your college. Then climb up the stairs to
reach the computer science laboratory. For all these movements, you will note the time taken
for each part. If due to some reason, you are unable to get ready by 7 AM and you already
NOW that it takes one hour to reach from fiouse to college by bus/rikshaw, then you will
ke a faster means of transportation. You may take an autorikshaw or a taxi. Thus, a very
Simple problem of reaching the computer laboratory of your college by 8 AM will need sev-
®1al steps for solution. Each step is to be accurately defined/marked so that no guess work is

Scanned with CamScanner

Data Structures

COUNT =COUNT + 1

/ PRINT SUM, COUNT /

'
Q STOP v

| Figure 1.1 Flowchart for solving problem in Example 1
necessary. You can thus represent the soluti i '
ot }; P tion of this problem in three steps as shown in

In Figure 1.2, steps 1, 2 and 3 appear to be very si \
Ink 2 ’ y simple. In actual practi '
to give instructions to a person, who is going for the first time, it 1§ayv1t11(c)f }‘;\;h:(f)l z:sl;hli‘c,)i

N AT

S SRS

ﬁxanée’ %/ou have to define the w.ord "READY" precisely so that he knows exactly what h
as to do by 7AM to get READY. Similarly, in step 2, you may have to clearly s eci? th bus
route number, the bus gsqphtpjgg_a;_r_d,_.the.b,u,s_,,_thgglace to get down from the b)(lspetc }\,(oue s
{te num : 10 get dow the bus, etc. may

also like to tell that a bus is not to be boarded. if i
ed, if it is overcrowded. Th "
needs to be exactly defined. Finall reed. the word "overcrowded"
. Y step 3 needs further elaboration abo ——
and Yfloor number;. where the computer laboratory is located and how to ;le;g}ﬁl:z(;? mmber
ou can explain all this to a person who does not know any thing about the éomputer

laboratory, provided you know i
A 1t correctly. In the same wa m
- - “\,‘ ‘ O
computer, if you know exactly what the problem is and'Bo“Wytoysoliv?ir’; s:cc)zlr‘z’s;lyp roblem on 2

Ty

Scanned with CamScanner

Algorithms (Analysis and Desigh) 5

GET READY BY 7 AM STEP |
A
TAKE BUS FOR
COLLEGE SLEFZ
‘ -
REACH COMPUTER
SCIENCE LAB BY 8 AM STEES

Figure 1.2 Step by step solution to reach college computer science laboratory (LAB)

1.2 TOP-DOWN AND BOTTOM-UP APPROACHES TO ALGORITHM
DESIGN ~

-1.2.1 Top-Down Approach of Problem Solving

Top-down design is the technique of breaking down a problem into various sub tasks needed
tobe performed. Each of these fasks is further broken down into separate subtasks, and so on
till each subtask is sufficiently simple o be written as a self contained module or procedure.
The entire solution of the problem will then consist of a series of simple modules and joining
them together will make the complete task of solving the complex problem.

- Intop-down design, we initially describe the problem we are working with at the highest
or most general level. The description of the problem at this level will usually be concerned
with what must be done - not how it must be done. The description will be in terms of
hi h _1 \—-.————4" ’ P Dt © e st rel - . ' o . s
gher-level operations. We must take all of the operations at this level and individually
break them down into simpler steps that begin to describe how to accomplish the tasks. If
these simple steps can be represented as acceptable algorithmic steps, we need not split them

any further. If that is not the case, then we split each of these second level operations indi-

‘t’(l)dulally into still simpler steps. This stepwise refinement continues until each of the original
P-level o

perations have been described in terms of acceptable -shortest (primitive)
Statements, | ‘

The top-down approach, starting at the general levels to gain an understanding of the

iKStem and gradually moving down to levels of greater detail, is done'in the analysis stage. In
eetp_{mess of moving from top to bottom, each component'is exploded into more and more
ails, =

p———

£

Scanned with CamScanner

Data Structures

I uS, e ¢

which is again broken down if necessary. .

7 : | to the most specif;
U Top-down process involves working from the most general form, down pecific

form, '

' » shown in Figuyr
The design of modules is reflected in an hierarchy chart sﬁfheatfr;?s: l?réfae?;tions e.g.ggez
1.3. The purpose of the procedure Main.is.to co-ordinate the th el Throu b Main. Sirru‘larly
Process and_Put routines. These three routines communicate only throug ’
Subl and Sub2, can communicate only through the Process routine.

e o

Main

/ v' Get - Process Put

Subl Sub2

Flgure 1.3 Top down modular design

Ly Using the top-down agproach, attention is first focussed on global aspects of the overall sys-

tem. As the design progresses, the system is decomposed into Subsystems and more consider-
ation is given to specific issues. o

./ Advantages of Top-down approach

. This approach allows analyst to remain "on
v/ solution in the context. The solution always Proceeds from the h

est level. With other techniques, we may | find ourselves bogged 4 ‘
level decisions at a very early stage, It will-be diffic 8&ed down with very low-

a number of subproblems, it ig easier io share pr
: . ’ nare problem
development, Por €xample, one >rson may solve one part of the problem an&at%éfgttfer
tof the problem, == gy

Scanned with CamScanner

- _ Algorithms (Analysis and Design) ' 7

. S trl‘rlle is f(()) gral'ltl Vit h_’;lVe bugs and the debugging time grows quickly wh
< prOgrfa 11 ng, it will be easier to debug a long program which is di?/ided ?nt‘::; aen e
ber S ’fsltna' er S;!gments or parts. The top-down development process specifies ar:;in:
tiont in terms of a group of smaller, individual subtasks. These smaller tasks w }Id
pecome the ideal units of program for testing and debugging | | o

.If wg add a new piece of code, say "p" to the overall program "P", and an error con-
dition occurs, we can defir“\itlely state that the error must be either in "p" itself or in the
interface between "p" and "P", because "P" has been previously checked and certified to

be correct.

¥ By testz:ng a program broken into smaller pieces, we greatly simplify the time consuming
debugging process. In addition, we will have the satisfaction of knowing that everything we
have coded so far is correct, ' '

Another advantage of top-down development process is that it becomes an ideal struc-
ture fgﬁ _managing and implementing a program using a team of prqgrammérs. A
senior programmer can be made responsible for the design of a high-level task and its
decomposition into subtasks. Each of such subtasks can then be "given out" to a junior
programmer who works under the direction of the senior staff. Since software projects
are carried out by teams of two or more programmers, this top-down characteristic
helps in faster completion of the solution of the complex problem.

I [n summary, top-down method is a program design technique that analyses a problem in

~ terms of more elementary subtasks. Through the technique of stepwise splitting, we expand
and define each of the separate subtasks until the problem is solved completely. Each subtask is

tested and verified before it 15 expande_d further.
g are three more advantages:

®

In addition to above the followin ‘
2. Increased comprehension of the problem. .
b. Unnecessary lower-level detail are removed.

¢ Reduced debugging time. .-
roblem Solving

122 Bottom-up Approach of P o ol
_ , , be difficult to see how the w0 e thing
When faced with a large and complex problem, it may blem individually, taking the easier

can be solved. It may be easler to solve parts of the problem 'n ially, taking the easier
Mand th;}égzgainiﬁﬁﬁé’mi’g‘ﬁtﬁﬁa _We)}gggilggggtp tackle thﬁe ToreTc}i{Igggjé; flaési;%
and finally join each of the solutions together fo form the complete solution.

thtom.u

p approach. | e
that the parts of the solutions or prog

e enally. Th e Qisﬂdézg_ Ea_t%%& of consl;stency among modules, an thus,

8y not fit . There ma _
more re-prtét;gethe%y E;se to bZ carried out. Hence, this approach is not ve'ry much

avoured.

-~ e

Scanned with CamScanner

e Dalta Structures

1.3 USE OF ALGORITHMS IN PROBLEM SOLVING

steps to be followed to carry out an activity is calleq

an algorithim or procedure for solving awp'ro»ble'm. If the algorithm is written in a langgage that

the computer can understand, then such a set of instructic_)ns is called a progrt;m;t .
The task of writing a computer program involves going through several stages. So pro.

gramming requires more than just writing programs. This also requires writing algofithms,

as well as testing the program to locate all types of errors. - i
We can view an algorithm as a way to solve a problem or In other words, as a set of

directions, that tell us exactly how to go about for getting the desired results. For example, we
can use following steps or actions to reach the office by 10 AM.

A set of instructions which describes the

- Action
1. Getready by 8 AM.
2. Take breakfast
3. Board the chartered bus at 9 AM.
4. Reach office at 10 AM.

We can thus, define an algorithm as an ordered sequence of well-stated and effective oper-

ations that, when executed, will produce the results,
By “ordered sequence” we mean that after the completion of each step in the algorithm,

the next step is clearly defined. We must know exactly where to look for the next instruction.
The ordering could, for example, be specified by writing a number to the steps with the posi-

tive integers and following the sequencing rule.

l@’/ An algorithm must always have one clearly understood starting point and one or more clearly
understood ending points.

The starting point can be implied - we usually assume. that we are to start at step 1.- or it

can be stated explicitly (one step may be labeled START). More than one starting point would

create confusion about where to start, violating the ordering condition just stated.
It is perfectly acceptable to identify one or more of the steps in the algorithms as terming-

ors — steps that, when executed, end the execution of the entire algorith—ﬁi;"Hc‘)W_é\?'e'ﬁ'féga}d-

t
Imﬁch section we execute, we wish to stop after completing that section.
The outline, given in Figure 1.4, contains a single clearly identified startin.

ng pe ,_'i‘(step 1)

and three clearly defined terminators (steps 5, 8, and 11). The set of steps executed will
always be either (1,2, 3,4,5),0r (1,2,6,7,8), m,'m; 11). | 1% ed w

1. START
2. Make a decision that divides the problem into three possible cases:
. Case 1 Case 2 Case 3
, 3. 6. 9.
- g 7 10.
. . 5 STOP 8. STOP 11. STOP _ N

Figure 1.4 Outline for solving a problem

Scanned with CamScanner

Algorithms (Analysis and Design)

The existence of one or more terminators, however, is insufficient to guarantee that
execution will eventually stop.

Another fundamental characteristic of algorithms is that each individual operation must
be both "effective"and "well defined". By "effective” we mean that some formal method must
exist for carrying out that operation and also getting an E{néwer. For example: -
2 computenx(n+1), — -

'p. determineif x is even,

/¢, wait for one hour and 10 minutes,
\ d. takethe square root to a maximum of three decimal place accuracy.
- are all effective operations, and could be easily carried out.
” But look at the following statements:
“e. Computen+0ie. divide nby zero. -

f. Determine the largest prime number. <~

g Write the exact value_ for the square root of 2.
_ h. Waitfor -1 hour. ~ ' '

—7The above stated steps are not effective. They either cannot be evaluated or we have no idea
how to go about answering them.

Each individual operation must be “well defined”” — which means, that they are clearly
_tirﬁexrs;t_illd_a}yrl_g_;gnd without an iota of confusion to the person or machine that is executing
the algorithm. A basic question about algorithm concerns the type of well-defined operations

we are allowed to write at each step. That is, what are the building blocks from which we can
compose an algorithm? These building blocks, are also called primitives.

For example: 2
MIX x INTO Y -

MEASURE x units OF ingredient

STIRx — -

COOK x AT y°c for z minutes ~
COOK x UNTIL temperature = 100°c

The statements whose meaning is clear to most people would be more realistic examples of
Cooﬁﬁg_&'miﬁge_s. However, even these simple statements may not be acceptable primitives if

there is any confusion or uncertainty about their meaning . For example, does COOK mean
bake, boi], fry, or grill?

1.3.1 Developing an Algorithm

The process of developing an algorithm to solve a specific problem is a trial-and-error pro-
SE?.S_t at may need numerous attempts. Programmers will make some initial attempt at a .
?g ution and review it to test its correctness. The errors they discover will usually lead to
S i L]
o3 ﬁﬂﬁwggil&s}ge&%}n@e existing algorithm. It may need scrapping the old
€ginning a new solution.

Scanned with CamScanner

J

1.3.2 Characteristics of Algorithmic Language
Some characteristics of the algorithm language are given below:

‘al

_
o

By a judicious choice of algorithmic language primitives, we can ensure that tht? flnfll
algorithm will be closely related to the desired programming language. Thus, it will
facilitating the next step of translating the algorithm into that language progam.

We will however be bogged down in the restrictive syntax of a speqlfic': language. An
algorithmic language should be viewed as a set of guidelines for building procedgres
but not as a rigid set of rules. There will not be any rules for punctuation, spelling,
vocabulary, or use of synonyms, T

The representation of algorithms in our algorithmic language, along with a judicious
use of indentation, will clearly indicate the relationships among various statements and

thus allow us to gain a better picture of the overall organization and structure of the
solution of the problem, '

_~ Example 2

_ Write an algorithm to find the sum of the first k integers, 1, 2, ..., k. The value of k will be an
- external input to the algorithm, (Be sure to handle the illegal situation ofk<=0.)

BEGIN
read k
if k <= 0
then
write "illegal value for k"
END
else
| set 1 to 1
/ set sum to 0
repeat k times
add i to sum
increment 1 by 1
end of the repeat loop
write "the sum of the first", k, "integers is", sum
END '
o Example 3

Develop an algorithm to solve quadratic equations of the form ax? + bx + ¢ = 0 using the qua-
- dratic formula:

Roots =

a.
b.
c.

~b £\b? - 4dac
2a

Your algorithm should handle the regular cases as well as the special cases of:
~adouble root if (* - dac = 0),

complex root if (b? - 4ac < 0),
a nonquadratic equation (@ = 0),

Scanned with CamScanner

Algorithms (Analysis and Design) 11

4. anillegal equation if (=0, b= 0),

Solution
BEGIN
read a, b, ¢
jfa=0and b =0
then write ‘‘illegal equation, cannot solve’’
else
if a = 0 then
set root to - ¢/b
write ‘‘linear equation, the one root is’’, root
else
get discriminant teo b? - 4ac
if discriminant < 0 then
write ‘‘roots are complex, cannot be solved'’
else

—b +\discriminant
set rootl to
2a .
) ~
=b = \/discrimirl@ -
2a

write ‘‘answers are’’ , rootl, root2
END '

1.4 DESIGN OF ALGORITHMS
In designing algorithms we need methods-te-separate bad algorithms from good ones. This is

because there are usually more than _one possible ways to solve a problem. It is for us to
decide which method will prove the most effective-for the solutions of that problem,
Analgorithm is clearly specified set of simple instructions to be followed to solve a prob-
lem, Once an algorithm is given for a problem and decided to be correct, another important
Step would be to determine how much time or space, the algorithm will require,
il Each of the algorithms will involve a particular data structure. Accordingly, we may not
Ways to able to use the most efficient algorithm, since the choice of data structure depends

set root2 to

°2 many\ﬂﬂﬁ'gﬁfiﬁcludﬁgtﬁg}@?éf—dgga and the frequency with which various operations
h\creata are applied. The cholce of data structure ' may involve time-space tradeoff, i.e. by
a8ing the amount of space for storing the data, one may be able to reduce the time

rf&gﬂmessﬁng the data or vice versa.

[=:y

Onice the data structure is chosen for a particular application, program is written by the set of

lc;gical instructions that manipulate the related data items. Thus, a study of data structure is
—Wsoastudy of the algorithms that control them. :

Cert i :
aiq qualities can be identified as desirable traits in all such algorithms.
L ‘

Scanned with CamScanner

Dain

J,

| i
]

Data Structures

12

. - - 1 _

First, the algorithm must be expressed in a fashion that is icdoi?lgljie Zréli'zieérolfi a;?bf@jty‘
The method we use to express algorithm must be formsfl tz r?;/;)gh . alllz)w o t(-)nfoerem‘ii
a natural language. The algorithm should be flexible cus o,

problem-oriented issues. _ .

Second, algorithms should be efficient. They should not unnecesisarllyTgse II}emOry log,
tions nor should they require an excessive number of logical operations. To analyze the eff,
ciency of an algorithm, we will have to describe numerically the memory and logigy

operations that they may require. = o]

Third, algorithm should be concise and compact to fac111tatex‘Y“_e:Eftlga_f}Q{{Qf their Correctig,
Verification involves observing the performance of the algorithm with a c'arefull.y selected gy
of test cases. These test cases should attempt to cover all of the exceptional Clrcumstang,

likely to be encountered by the algorithm.
1.4.1 How to Design an Algorithm?

‘ Algorithm design is a creative activity. The first step in designing an algorithm is to produg
a clear specification of the problem. For designing any algorithm, some important thing;
should be considered. These are run-time, space and simplicity of algorithm. In some cases
input data may also be decide in designing an algorithm.™ o
Some common approaches for designing algorithms are:
° Greedy Algorithm: The greedy algorithm works in steps. In each step this algorithm
~ selects the best available option until all options finish. This approach is widely used in
many places for designing algorithm. For example, the shortest path algorithm (discussed
in Chapter 8). B -

° Divide and Conquer: Divide and conquer is a design strategy which is well known
for breaking down the efficiency barriers. When the method is applied, it often leads to
a large improvement in time complexity. In divide and conquer, the big problem is
divided into same type of smaller problems and we design the algorithm to combine
the implementation of these smaller problems for implementing bigger problem. For
example, in guick sort (discussed in Chapter 7), we divide initia] list into several smaller
lists, after soﬁi’ng those smaller lists, we combine them and get the final list sorted.

° Non-recursive algorithm: A set of instructions that perform a logical operation can be
grouped together as a function. If a function calls itself, then it is called as direct recur
sion. If a function calls another function, which jn turn invokes the calling function, then
the technique is called as indirect recursion, The recursion is very powerful technique
which is supported by programming language C.

e Randomized algorithm: In randomized algorithm, we use the feature of random

’ number instead of a fixed number. Performance of some algorithm depeITa's‘%Upon the
input data. It gives different results with different input data.

o Backtrack algorithm: An algorithm technique to find solutions by trying one of sev

s eral choices. If the choice Proves incorrect, computation backtracks or restarts at the

. . D B e ——— = —~——— .
point _of choice andmt‘ljgf E_nother choice. A backtracking algorithm is to write a function
or procedure which traverses the solution space. For example, game tree.

Scanned with CamScanner

Algorithns (Analysis and Design)

13

o Modular progfammmg approach: In industry and commerce, the problems that are
/ to be solved Wlth the help of computer needs thousands or even more number of lines
of code. The 11?nportance of splitting a problem into a series of self contained modules
-tlien becomes important. A module should not exceed about 100 or so lines and should
referably be short enough to be on a single page. Since module is small, it is simpler to
understand it as a unit of code. It is therefore, easier to test and debug a shorter module
especially if its purpose is clearly defined and documented. In a very large project, sev-

eral programmers may be working on a single problem. Using modular approach, each
programmer can be given a specific set of modules to work on. This enables the whole

program to be completed soon.

As soon as one can write an algorithm, it is necessary to learn how to analyze an algo-
sithm. The analysis of an algorithm provides information that gives us a general idea of how
long an algorithm will take for solving a problem. |
Tojudge an algorithm, there are many criteria. Some of them are as follows:

o Itmust work correctly under various conditions. -~
« It must solve the problem according to the given specification. ©~

It must be clearly written following the top-down or bottom up strategy. -
. It must make efficient use of time and resources available. .

It must be sufficiently documented so that anybody can understand its implementation.
o Itmustbe easy to modify, if required.

It should not be dependent on being run on a particular type of computer. -

1.5 IMPLEMENTATION OF ALGORITHM ~—

After spelling out completely and precisely the requirements for each tasks and sub-tasks
(function), it is ti@e_io,,che._them‘into our programming language (say C, C++ or Java etc.).
Just as we design from the top down, we should code from the top down. Once the specifica-

tion at the top levels are complete and precise, we should code the subprograms at these lev-
els and test them appropriately.

1.6 VERIFICATION OF ALGORITHM

Algorithm verification is a proof that the algorithm will accomplish its task. This kind of
proof is formulated by looking at the specifications for the subprograms and then arguing
that these specifications combine properly hto.accomplish the ti}f’_lf,o_f_t_he whole algom;itf{f‘r{."
Verification of algorithm would consist of determining the quality of the output received.
In other words, it is a process of measuring the performance of the program with any laid
down standards. The feedback so obtained, then sets the basis for making necessary changes

in the already designed algorithm specifications. Algorithm verification should precede cod-
ing of the programm?w"““ b= el of St

1.7 EFFICIENCY ANALYSIS OF ALGORITHMS

Ar_l algorithm analysis provides information that gives us an idea of }39_1\(long an algorithm
will take for solving a problem. For comparing the performance of two algorithms, we have

to estimate the time taken to solve the same problem using each algorithm for a set of N
et

L
*

Scanned with CamScanner

14 | Data Structures —

‘ arisons a searchj
input-values, For example, we might determine the nulmb"efe gfigf?:?iztermine the nun?i:gr
algorithm does to find a value in a list of N values. Similarly, w trices of size N * N. A numbeg,
of arithmetic-operations an algorithm performs to ?‘_dd two ﬁ] a et the analysis of algorithm
of algorithms might be able to solve a problem succes§fu y }}: 1d be chosen to solve i3
gives us the scientific reason to determine which algorlth‘m shou ,

problem most efficiently.

U The performance of algorithms can be judged by criteria such as whether zth satisfies :‘I.ze o?gi.
nal specification of task, whether the code is readable. These factors affect the computing time

and main memory requirements of the machine.

1.7.1 Space Complexity

Space complexity of a program is the amount of main memory in a computer. It needs tf’ Tun
for completion. The space needed by a program is the sum of the following components:

a. Fixed part that includes space for the code, space for simple variables and fixed size

« component variables as well as, space for constants etc. . |
b. Variable part that consists of the space needed by component variables whose size is
dependent on the particular problem instance being solved, and the stack space used by

recursive procedures.

1.7.2 Time Complexity

Time complexity of a program is the amount of computer time it needs to run a program to
completion. Suppose, space is fixed for one algorithm then only run time will be considered
for obtaining the complexity of algorithm. The time complexity may give time for:

/ a. Best case

" b. Worstcase

< ¢ Average case

Best Case

Most of the algorithms behave in best case. In this case, algorithm searches the elements in first
time itself. For example, in linear search, if it finds the element at first time itself then it
behaves as best case. Best case takes shortest time to execute, as jt causes the algorithms to do
the least amount of work. =~ ' '

—Worst Case

Inworst case, we find the element of time at t_f_lg,e}ﬁ or the total time taken when searching of

de{nentsﬂffails. This could involve comparing the key to each Iist value for a total of N gm-

parﬁsolns. For example, in linear search, suppose the element for which algorithm is é‘é'ef'r”d}'clin g

is the last element of an array or the element is not available j i
n arr :

as worst case. ay then algorithm behaves

Scanned with CamScanner

Algorithms (Analysis and Design)
- ‘ 15

Average Case

Analysing the average case behaviour of an algorithm is more com lex th

-) an b
worst case. Here, we take the probability with the list of data items A\If)erage case i?taiaziif;ri
should be the average number of steps but since data can be at any place, so findir%g exact

pehaviour of algorithm is difficult. As the volume of data incre i
ko li’kgyyp_rwst case algorifhm ! T€ases, average case of algorithm

1.7.3 Frequency Count

To make an analysis machine independent it can be assumed that every statement will take
the same E@ét?nt»z_i‘mﬂo‘unt of time for its execution. Hence, the determination of time com-
plexity of a'given program is the summing of the frequency counts of all the statements of
that program. The time complexity can also be expressed to represent only the order of
magnitude represented by the frequency counts. One such notation for frequency count is
Opder notation (0" notation). -

‘O Notatlon’ —

‘O’ notation is used to measure the performance of any algorithm. Performance of an algo-
rithm depends upon the volume of input data. ‘O’ notation is used to define the order of the
growth for an algorithm. o .

-~ We write O(1) to mean a computing time that is a constant i.e. when we get data in first
time itself. For example, in hash table, | p_—

~ O(n) is called linear, when all the elements of the linear list will be traversed. For example,
the best case while using bubble sort method.

.~ O(n’) is called quadratic, when all the completed list will be traversed for each element.

For example, the worst case of bubble sort method.
= O(log n) is when we divide linear list.to half each time and traverse the middle element.
For example, method used in binary searching. s iR
< O(nlog n) is when we divide list half each time and-traverse that half portion. For exam-

ple, best case of quick sort of an algorithm will take?O(log n) time. This method is faster than

(\ Q(I}Z:,However;”()(n log n) is better than O(n’) but not as good as O(n). _

1.8 SAMPLE ALGORITHMS _—

Some examples of algorithms are given in the following sub-sections.
8.1 Exchanging the Value of Two Variables

Exchanging the value of two variables means interchanging their values. We can clearly
understand this by an example. ' e of
Suppose we have two variables x and y. Our aim is to swap or interchange the value of x

and y,
 The original values of x and Y are:
11 s]
X y

Scanned with CamScanner

Data Structures 2

aber, the electronic elfzments of @ Computer Tee

ing 8 bin®") " ch plectronic circuits at any time is ejtp,, high aveonly

e outpit t';ely High is represented by 1 and loy i ., " loy, %,
1 respectitt s

- by
derstand only binary number syster, But g
pers are converted to binary code

. n ey
directly ¢ AL TS
o cal uch num S Withiy tam
\comp' its. IIs . ina numbers Only thec t
f n; o decimal %;8Can operate using binary O
0 e

er fo Binary Number

binary number, the decimal numpe, -
iv

ders are noted down at each stage, Ty, uotiided)
€t

I
pecause €0 .~ Numb
' conversion of D'eC’malmber 0 a
¢ a decim n in
To conver ient and remé\1 t stage. The process is repeateq
. the next stage. Peated upj
o is divided DY 2 at MR the gy

receding $195 ow write the remainders to right hand side (R.H.S) of the Previgyg teny

becomes zerO-t of digits. To make binary equivalent, put the remainders in Teverse gy,

der to get zli SZ fnanice presentation of the decimal number 13 is shown beloy:
example, £1€ Quotient Remainder
13+2 =20 1 LSB
622 =3 U
322 =1 | -~
1-2 =0 1 MSB

MSB = Most Significant Bit
LSB = Least Significant Bit
So binary representation of (13),, will be (1101)s:
Algorithm -
Begin
Get the decimal number whose binary equivalent we want.

Div.ide the decima] number by 2
Write the remainder. |

ngtient of previoysg
Write the femainde
€peat the Process

' tnextstaga
Stage become the dividend and again divid'e it by 2855 /
I'to right hand side (R.H.S) of previous remainder:
successwely till quotient is zero. - hen place
g by the r emainders at different stagess

4!

versi .

8 digits |, an Integer Number i’

asically eg For ¢

Resyt 8 5 6 g NS changing the digits order backward®

3 (EaCh dicit 1o 1. . A

Scanned with CamScanner

16 Data Structures

After swapping the result should be:

58 11

X y s .
To do so, we need one temporary variable, i.e. t. First, copy the Valge of x into ¢, ie.

11| > |1 |

X t

then copy the value of y into x,'i.e.

58 — 58

_ y X
copy the value of ¢ into yie.

11 — 11

t Yy

At last, we shall get the new values in x and y as seen below:
58 11
X y

We find that the value of x and y have now been interchanged as desired.
Algorithm
1. Begin
2. Get the values of variables x and y.
3. Assign the value of x to t.
4

Assign the value of y to x. So x has the original value of ¥ now in place of the original

value of x.
5. Assign the value of t to y. | / "
6. Show the values of x and y. -
7. Stop

1.8.2 Summation of a Set of Numbers

Summation of a set of numbérs is lik

e adding numbers given in a series. To add a set of
numbers manually,

we are used to start adding the digits in the right most column. For
example:
782
222
565 4

.9

Scanned with CamScanner

Algorithms (Ahalysis and Design) 17

When using computer, we must design an algorithm to perform this task by a different
approach. Computer can add two numbers at a time and return the sum of two numbers.

So toadd n gumbers, we initialize the variable location S, where we are going to store the
Sum, by the assignment 5 = 0. Now, we first do the following:

S =S +a, where g, is the first number

then we do S =S +a, (The new value of S contains a,+a,)

then S = § +a, (The new value of § contains a, +a,+a,)

andsoontill § =S +a,

Here, we are repeating the same process again and again. The only difference is that the
values of 2 and S changes their values with each step. ‘

Algorithm

1. Begin

2. Read n numbers to be summed. '

3. Initialize sum as 0. : : : s g
4. Initialize ‘count’ as 1.

5.

While ‘count’ is less than or equal to 1, i.e. numbers to be added, repeatedly do:

a. Read the number at position ‘count’, i.e. when count is 1 read 1st number, when
count is 2, read second number and so on.

b. Update the current sum by adding to it the number read.
c. Add1to’count’.

6. Write the sum of n numbers. (After the number at n'" count has been added, the control
will shift to step 7.)
7. Stop.

1.8.3 Decimal Base to Binary Base Conversion

Before doing such a conversion, we need to know definition of decimal number system and
binary number system. ‘

Decimal Number System

It is the set of numbers having base 10. Since a decimal number system uses 10 digits from 0

to 9, it has a base 10. The decimal number system is also called base 10 system. For example,
6598, 75, 100567 etc. are exampleés of decimal numbers.

Binary Number Sysiem

Binary means 2. The set of numbers having base 2 is called binary number system.

Binary numbers consist of only two digits, i.e. 0 and 1. Each one of these is also called bit,
ashort form of binary digit. B |

Scanned with CamScanner

Sl R R G € e Tl VAN i 7 RS Sk AATEEER

18 Data Structures

15y For storing a binary number, the olectronic elements of a computer need to have only tuo g,

ble states. The output of such electronic circuits at any time is eitfzer high or low. These stqtp
represent 1 and 0 respectively. High is represented by 1 and low is represented by 0.

A computer can directly understand only binary numbe.r system. But we use data in the
form of decimal digits. All such numbers are converted to binary codes within the compuyte;
because computers can operate using binary numbers only.

" conversion of Decimal Number fo Binary Number

To convert a decimal number to a binary number, the decimal number is divided by 2
successively. The quotient and remainders are noted down at each stage. The Q_uotient of the
preceding stage is divided by 2 at the next stage. The process is repeated until the quotient
becomes zero. Now write the remainders to right hand side (R.H.S) of the previous remain-
der to get a set of digits. To make binary equivalent, put the remainders in reverse order. For
example, the binary representation of the decimal number 13 is shown below:

Quotient Remainder
132 =6 1

LSB
62 =3 0)
322 =1 1 -
1=2 =0 1 MSB

MSB = Most Significant Bit
LSB = Least Significant Bit

So binary representation of (13),, will be (1101),.

Algorithm
Begin
Get the decimal number whose binary equivalent we want.

Divide the decimal number by 2.
Write the remainder.

Quotient of previous stage become the dividend and again divide it by 2 at next stageé:
Write the remainder to right hand side (R.H.S) of p \

Repeat the process successively till quotient is zero.

The set of digits formed by the remainders at different stages, when placed in the
reverse order, will form the binary equivalent of the decimal number.
9. Stop. ‘

.

revious remainder. S

o N1 oUW

1.8.4 Reversing Digits of an Integer Number

Reversing digits basically means changing the digits order backwards. For example:
Input 3 5 6 8

Result

-

-
-

8 6 5 3 (Eachdigit placed in the reverse)

Scanned with CamScanner

Algorithms (Analysis and Design) 19

To do so, we divide the number by 10 and print the remainder.

Dividend
Divisor —>»10 |3568 ' 356 <«— Quotient

30
56
50
60
8 «— Remainder

We can get the remainder by mod() function
r=3568 mod (10)
=8
Now remove 8 from the original integer. So we next get 356 (number to be reversed)
again -

r =356 mod (10)
=6

e L e e T e RTINS T i e e W P

—

Successively, we find out the remainders until the dividend is less than 10. Now place the
digits of the remainders in the reverse. ,

Therefore, we can use the integer division by 10 to remove the right most digit from the
number being reversed and construct the reversed integer by writing the extracted digits to
the right hand side of the current reversed number representation. At last, when the dividend
is less than 10, then add it to the right side of the current reversed number representation.

Number to be Changed : Reversed-digits Number
3568 8 :
356 86 /
35 865
3 (i.e. less than 10) 8653
Algorithm
1. Begin
2. Get positive integer number to be reversed. ~

3. While the integer number being reversed is greater than 10 repeatedly do:

a. Extract the right most digit of the number to be reversed by remainder function, i.e.
function modJ().

b. Construct the reversed integer by writing the extracted digit to right hand side of
the current rqversed number.

Scanned with CamScanner

| | Data Structures
20 \

' the integer (dividend which is less than 10) to the R.H.S of the €Vverseq Nupyy,
Write the 1 : S

4.

5 Sto N
1.8.5 c-}:CD (Greatest Common Divisor) of Two Numbers

The greatest number which is a common factor of two or more given Numbers i callgg 6

(Greatest Common Divisor).

How fo find GCD
Suppose two numbers are given. Now, divide the greater number by the smaller gpe Nex

divide the divisor by the remainder. Go on repeating.the pr OCQSS_ of diV'iding the precedin’
divisor by the remainder last obtained, till the remainder zero is obtained. Then, the lasgt
divisor is the required GCD of the given numbers. Suppose, we want to find GCD of 136 ang

170, then
Say, a=136
b=170
Greater numberis b i.e. 170; so b will be dividend.
Smaller number is g, i.e. 136; so a will be divisor.

Dividend
Divisor —» 136’ 170 ’ 1

136

——

34 «— Remainder

Remainderi.e. 34 is now divisor

~ Dividend
Divisor —» 34 136 | 4

136

——

0 «— Remainder

Therefore, the greatest cOmmon djviggy (GCD) is 34

Algorithm

Begin - ,
Get 1* and 2 (non-zerg) i /
0) inte i

Check which integer ig largergerSI "¢ andp. |

Get the remainder by dividing the
Make smaller integer be divideng
Let remainder be the divisor,
Repeat step 4, 5, and 6 until 5 :

iy Zero Temainder jg obtained. Now the last divisor 15 e

s

Scanned with CamScanner

e ———— e r 8 B ishi T

Algorithms (Analysis and Design) 21

1.8.6 Test whether the Given Number is a Prime Number!

The natural number 1 has only one factor. Except 1, every decimal number has two or more
factors. For example, 2 has two factors 1 and 2, the number 3 has the factors 1 and 3. The
number 4 has three factors 1, 2 and 4, the number 5 has two factors 1 and 5. The positive

numbers which have only two factors i.e. 1 and that number itself are called prime numbers.
The example of prime numbers are 2, 3, 5,7, 11, 13, 17, etc.

[

15" Prime numbers are any of the positive integer numbers greater than 1, each divisible only by
itself and by 1. Thus, 2, 3,5 ,7,...... etc. are prime numbers.

Our aim here is to find the prime numbers. A Greek mathematician Erotosthenes who
lived in the 3" century BC gave a very simple method for finding a prime number. The
method is known as "Sieve method". Suppose we have to find all the prime numbers in the
range of 1 to 20. To find the prime number, follow the steps:

1. Strike out 1 because it is not a prime number. |
2. Encircle 2 and strike out all the multiples of 2, i.e. 4, 6, 8, 10, 12, 20.

1 @ 3 4 5 6 7 8 9 10
11 2 13 ¥4 15 % 17 18 19 20
3. Encircle 3 and strike out all the multiples of 3.

®@ ® 5 7 9 11 13 15 17 19

 We continue the process of encircling and striking till every number in list is either
encircled or struck out.

OOOOLE WV WY

All the circled number are thus prime numbers and the numbers that are struck out
except 1 are composite numbers. This method is given as an algorithm below.

Algorithm i.

1. Begin

2. Get the number'which we want to check whether it is prime or not.

3. Setvalue of divisor to 2.

4. Divide the number by divisor (i.e. 2 first)
If remainder is zerd; then the given number is not prime, else the process is to be con-
tinued.

5. Increment divisor by 1, divide the number by the incremented divisor and check if
remainder is zero. Keep repeating the process till either the remainder becomes zero or
until divisor is equal to the number itself. If remainder becomes zero at any stage, the

number is not prime else it is prime if carried to last stage, till incremented divisor is the |

number itself.
6. Stop.

Scanned with CamScanner

Algorithms (Analysis and Design) 23

all] a[2] a[3] a[4] a[5] a[6] a[7]

1 60 10 8 50 6 12

L 4

Figure 1.5(d)
Swap the value of a[2] and a[6] with the help of temporary variable, temp. See Figure 1.5(e).

a[1] a[2] a[3] a[4] a[5]1 a[6] a[7]

1 -6 10 8 50 60 12

< > <— - —>
Sorted part Unsorted part

Figure 1.5(e)
Repeat the above steps to get the 3" element, then 4™ and so on. See Figure 1.5(f).

a[1] a[2] a[3] a[4] al5] al6] a[7]

{ | 6 | 10| 8 |50 |60 | 12

<> <
Sorted part '

Unsorted part

ss the unsorted array only (n - 1) times. The last element of the

Note that we need to proce
array would now be in the ascending order.

&

Scanned with CamScanner

T T N e O R P R 5 R R,

.

o4 Data Structures

a[l] a[2] a[3] a[4] al[5] al6] a[7]

1 |6 |8 10|50 |6 |12

< > < —>
Sorted part Unsorted part

alll” al2] a(3] a[4] a[s] af6] 7]

1 6 8 10 50 60 12

—> <— —>

Sorted part Unsorted part

alll a[2] a[3] a[4) a[5] a[6] a[7]

> —)
Sorted part : Unsorted
part

all] a[2] g3 a4l a[5] a6 a[7]
DonnBnn

Sorted Array
Figure 1.5()

Scanned with CamScanner

TSR RN TN

Algorithms (Analysis and Design) 25

Algorithm -~

1. Begin ’

2. Read numbers and store them in an array of n elements i.e. size of array a is n with ele-
ments as a[1], a[2], a[3],, a[n].

3. Find the smallest element within unsorted array.

4. . Exchange i.e. swap smallest value of the array element and store it in 1* element of the
unsorted part of array.

5. Repeat steps 3 and 4 until all the elements in the array are arranged in the ascending
order.

6. Stop

1.8.8 Find the Square Root of an Integer Number

Before understanding square root, we must know what we mean by squaring a number. To
square a number is to multiply the number by itself. For example:

1*=1x1
ml
2=2x2
=4
3*=3x3
=9

However, one of the two equal factors of a number is the square root of that number.
Let us read some more examples to understand square-root.

I’=1x1=1 The square root of 1 is 1.
2?=2x2=4 The square root of 4 is 2.

3*=3x3=9 The square root of 9 is 3.
Therefore, if we have to find the square root of 49 then we will see "what number multi-

plied by itself will give 49". Certainly 7x7 =49. But (-7 x -7) is also 49.

So, +7 is the square root of 49.

= A square root of a given number n is that natural number which when multiplied by itself

gives n.

We can say that if 4 is the square root of b then b is the square of 4. For example,

V49 =47 (7 is square-root of 49; 49 is square of +-7)

\/@: 8 (48 is square-root of 64; 64 is square of +- 8)

Scanned with CamScanner

R L c N BTy T AT D st et R 3R AN L 3 L o e N i e A AT BN -

Data Structures

26
Algorithm _ : ting with the right hand side (R g
1. Place bar over every pail of digits star -gw square root. 3)- The Rupyp,
" of bars indicates the number of digits In N q e
' 529
: t for the first pair that is less than or equal to the ¢
2. Find the largest squar 792 d'p'sor and get quotient. Put th ¥ first Pai;
Take the square root of this number as cIv! t% ; t pair of di '© quotient gp,,
the period. Subtract the product and bring down the nex pair Of digits to the right o
the remainder. :
2
21529
4
129
3. Double the quotient as it appears and enter it with a blank on the right for the next digit,
as the next possible divisor.
23
21529
4
43| 129 |
4. Guessa Poss_ib.le'digit to fill the blank and also to become the new digit in the quotient.
Ept.er this digit in both places. Multiply the new digit in the quotient and the new
divisor. Subtract and bring down the next period. .
23
21529
4
43| 129
129
5 R 0
. epeat st i :
peat steps 3 and 4 till the Jast pair has been used and the remainder comes to zero:

1.8.9 Factorial of g Given Number

The product of all ositive int : . . Jtis
denoted by !, For EI:xample, egers from 1 to 1 is called the “factorial 1’ or ‘n factorial"

S!1=1%2x3x4%5
=120

n!=lx2><3.....(n-2)><(n—1)><n

where 1 is a positive integer.

IS

It may be noted that 0! = 1, which means factorigl zero ;s equal to 1

Scanned with CamScanner

/,,,

e — R AR I SRR S L S GRS AN B = NN S A

Algorithms (Analysis and Design) 27

Let us take an example. Suppose we want to find out the value of factorial 5.
Initially assign the value of i = 1 and factorial =1

So method will be to successively go on increasing the value of i by 1 and keep updating
the value of factorial l?y multiplying the current value of i by the value of factorial till the
incremented value of i equals to the number desired for finding the factorial.

Thus, factorial = previous value of factorial x i,
i.e. start with i = 1, giving factorial 1 = 1 x 1 g
Now increment the value of i by 1, giving updated
factorial 2 =1 x 2
=2
Again increase the value of i by 1, giving
factorial 3=2x3
=6

Increment the value of i until the value of i becomes 5 and corresponding value of factorial
is obtained.

To summarize, the factorial will be calculated in the following way:
factorial1=1x1 =1
factorial2=1x2 =2
factorial 3=2x3 =6
factorial4 =6x4 =24
factorial 5=24 x5 =120
So5!=120
Algorithm
Begin
Get the number of which the factorial is to be calculated i.e. .
Assign the value of i = 1 and factorial = 1.
Calculate factorial n = factorial (n-1) x
-Increment the value of iby 1,i.e.i=1i+1.
Repeat steps 4 and 5 till step 4 has been executed with the value of i = n.

Write the value of factorial.
Stop. ’

o N oGk DN

1.8.10 Fibonacci Sequence

In a Fibonacci sequence, the previous two numbers are added to generate the next Fibonacci
number. For example:

Scanned with CamScanner

Data Structures
28 -

f,=1 (I"number € the Fibonacciseries)

£,=2 (2"in the Fibonacci series)

f3=f2+fl=2+1=3

fi=fi+f=3+2=5
fi=f,+f,=5+3=8, and so on.

e £ £ A F fra
NER R R

2 3 5 8 13 2l.....
To get next fibonacci number, we have to do sum of previous two numbers in the serie,

Algorithm
Assignsum=0,A=0,B=1,i=1
Get the number of terms up to which you want to generate the Fibonacci number, i,y

1
2
3. Add A and B to get next Fibonacci number.

4. Assignthe valueof Bto Aie A=B. : :
5 E
6

7

Assign the value of sum to B i.e. sum = B.

Write the value of sum to get next Fibonacci number in the series.

Incrementiwith 1ie.i=i+1and repeat step 3, 4, 5, 6 with the last value of i = (nisa
number of terms up to which we want to generate Fibonacci number series.)

8. Stop
1.8.11 Evaluate ‘sin (x)’ as Sum of a Series

We know that

x x5 X X

S. _x
TR T TR TR

Where x is in radians.
Understanding the problem

1. Read X
2. %(eep1 accumulating a product of integers (PRODUCT) in such a way that PRODUCT#
irst 1,

then 1x2x3,
then 1x2x3x4x5,and so on,

Product serves as the denominator in terms of the formula
3. Accumulate the terms: _ .
X x3 X5
. (PERODU?T)EI P)Iég)l))(gjcr t ;;%ED}?ET, = »
: ompute X', X, X" . .. e use of X! o
by 2,5 to obtain X and odd p ogwer of X. of X‘ where 1_1s initially set to 1 and in
5. Generate the oscillating sequence of terms

ted

Scanned with CamScanner

Algorithms (Analysis and Design) 29
X/ -Xal +X51—X7,+....
To do that, we note that (X)', (-X?, (X)?, (-X’ gives rise to X, -X?, X5, =X,
Hence we use -1 as successive multiplier to generate successive terms of the sequence from
their magnitude. :
The algorithm is given below :
Algorithm
1. Read x in radians.
2. Read n where ‘n’ is the number of terms of series which we may like to add-up to get
desired precision of sum.
3. For Ist term,
sum = x

product =1 (variable ‘product’ used for denominator)

‘num = x (variable ‘num’ used for numerator)
power =1

4. For next term,
num = num X (-x?)
power = power + 2
product = product x (power - 1) x power
next_term = num/product
5. Then,
sum = sum + next_term
6. Repeatstep 4 and 5, looping ‘n -
7. Print sum
8. Stop

1" times to get the sum of first ‘n’ terms of the series.

1.8.12 Reverse the Order of Elements of an Array |

Reverse order of elements means value of 1* position of the array is exchan

ment of the array, 2" element of array is exchanged with ‘2™ last’ and so on

ged with last ele-
For example, see Figure 1.6(a).

a[1] a[2] a3] a[4] a[5]

Before Reverse

Figure 1.6(a)

Scanned with CamScanner

Data Structures

30
a[l] a[2] a[3] a4l a[5]
9 8 4 3 1
After Reverse
Figure 1.6(b)

Here,

a[1] & a[5] (Swap element 5 value with element 1 value)

a[2] < a[4]

a[3] a[3]

Here, we can see the suffixes /subscripts on left hand side are jn increasing o_xjd_g{@d the
suffixes/subscripts on right hand side are in decreasing order. (See Figure 1.6(b)).

For determining the reverse-array subscript values, we can use the formula [n-i+ 1]
where ‘1’ is total number of elements an ‘7’ is the subscript of the element of original array.

A
AN\

n—-i+1
5-1+1=5
5-2+1=4 -~
5-3+1=3

Swapping the values of that elements in the array would thus be reversed.
To exchange the values of the elements of the array, we need one temporary variable.
Then we do the swapping as given below: :

temp =ali] -
alil =aln-i+1] -
- aln—i+1] =temp
Algorithm
1. Begin _
2. Get the values and store them in an array with elements a[1], a[2], a[3], a[4], ,aln]
where 7 is the number of elements. 7 ’ ’ '
3. Compute 7, the number of excha ge needed to reverse the array. r = integer value of
1/2. :
4. Exchange the i" element with [n-i+1] using
temp = a[i]

alil] =aln—i+1]

aln—i+1] =temp
5. Carry step 4, r times increasing i by 1,

Scanned with CamScanner

Algorithms (Analysis and Design) 31

6. Print the reversed array elements a[1], a[2], a[3], al4],, a[n].
7. Stop

1.8.13 Find Largest Number in an Array

Largest number means the number which is greater than all other numbers in the array ele-

ments. Another number(s) in the set may be equal to this number, but can not be greater than
this number. For example, in the following array:

Array 10 11 15 19 - 2

a[1] a[2] a[3] a[4] a[5]
we find that the number 19 is the largest number in the array.

For small set of numbers stored in the array, it is easy to find largest number, but finding
the largest value from thousands of numbers stored in the array may take long time. But
using following logic, we can get the answer in a short time.

Logic

CAssign the value of the first element of the array to variable temp, then compare the value of

temp to those of other elements in the array in order, one by one. If any element value is
greater than temp then put that value in temp and continue comparison.) :

For the array shown above value of temp = 10 taken from first element of the array.

Compare value in tenp to 2™ element value of the array. Here, 11 is greater than 10, so
delete the original value of temp and write down the 2™ number i.e. 11 in temp. We keep
comparing the 3" element value with the new femp value. The procedure will be continued
till all the elements in the array have been examined. In the end, we will get the largest value
in the temp variable.

Algorithm

1. Begin

2. Get the value of element in an array and store them in the array elements a[1], a[2]
a[n] where n is the number of elements. |

Set temporary variable and assign the value of 1% array element a[1] to temp.
Compare temp with the next element a[2] of the array.

If the element is having greater value than temp, assign that value to temp. >~
Repeat steps 4 and 5 till last element a[n] of the array is encountered.

Final value of temp is the largest value stored in the array.

Stop

® N oUW

Scanned with CamScanner

R 5 el SR S VN R SN L SN AS I N el AT Sl KA S SN SN SRS

