

B.Sc –COMPUTER SCIENCE

II YEAR III SEMESTER

OBJECT ORIENTED PROGRAMMING WITH C++

 Prepared by

 Dr.K.Shanmugavadivu

SEMESTER III

CORE III - OBJECT ORIENTED PROGRAMMING WITH C++

UNIT - I

Object-Oriented Programming: Principles - Benefits of OOP - Application of OOP - Tokens,
Expression and Control Structures: Tokens - Keywords - Identifiers and Constants - Data types -
Constants - Variables - Operators - Manipulators - Expressions - Control Structure.
UNIT - II

Functions: Prototyping - Call by Reference - Return by Reference - Inline Functions - Default
Arguments - const Arguments - Function Overloading - Friend and Virtual Functions, Classes and
Objects - Class - Member Functions - Arrays with in a Class - Memory Allocation for Objects - Static
data members - Static member functions - Arrays of Objects - Objects as Function Arguments -
Friendly Functions - Returning Objects - const Member Functions - Pointers to Members, Constructors
and Destructors.
UNIT - III

Operator Overloading and Type Conversions - Inheritance: Extending Classes - Derived Classes -
Single Inheritance - Multilevel Inheritance - Multiple Inheritance - Hierarchical Inheritance - Hybrid
Inheritance - Virtual Base Classes - Abstract Classes, Pointers, Virtual Functions and Polymorphism:
Pointers - Pointers to Objects -this Pointer - Pointers to Derived Classes - Virtual Functions - Pure
Virtual Functions
UNIT - IV

Managing I/O Operations: C++ Streams - C++ Stream Classes - Unformatted I/O and Formatted I/O
Operations - Managing Output with Manipulators. Working with Files: Classes for File Stream
Operations - Opening and Closing a File - Detecting end-of-file - File Pointers and Their Manipulators -
Sequential I/O Operations - Updating a File - Error Handling during File Operations - Command Line
Arguments
UNIT - V

Templates: Class Templates - Class Templates with Multiple Parameters - Function Templates -
Function Templates with Multiple Parameters - Overloading of Template Functions - Member Function
Templates - Non-Type Template Arguments. Exception Handling: Basics - Exception Handling
Mechanism - Throwing Mechanism - Catching Mechanism - Rethrowing an Exception - Specifying
Exceptions

TEXT BOOK

1. E.Balagurusamy, "Object Oriented Programming with C++", 5th Edition, Tate McGraw Hill
Publications, 2011.

2.
REFERENCE BOOKS
1. M. T. Somashekara, "Object Oriented programming with C++", 2nd Edition, Prentice Hall of India
Learning Limited, 2012.
2. Behrouz A.Forouzan, "A Structured Approach Using C++", 2ndEdition, Cengage Learning, 2003.

 UNIT -1

Overview of C language:

1.C language is known as structure oriented language or procedure oriented language

2.Employs top-down programming approach where a problem is viewed as a sequence of tasks
to be performed.

3.All program code of c can be executed in C++ but converse many not be possible

4. Function overloading and operator overloading are not possible.

5. Local variables can be declared only at the beginning of the block.

6. Program controls are through jumps and calls to subroutines.

7.Polymorphism, encapsulation and inheritance are not possible.

For solving the problems, the problem is divided into a number of modules. Each module is a
subprogram.

8. Data abstraction property is not supported by procedure oriented language.

9. Data in procedure oriented language is open and can be accessed by any function.

Overview of C++ language:

1. C++ can be considered as an incremental version of c language which consists all

programming language constructs with newly added features of object oriented programming.

2. c++ is structure(procedure) oriented and object oriented programming language.

3. The file extension of C++ program is “.CPP”

4. Function overloading and operator overloading are possible.

5. Variables can be declared in inline i.e when required 6.In c++ more emphasis is give on data

rather than procedures

7. Polymorphism, encapsulation and inheritance are possible.

8. Data abstraction property is supported by c++.

9. Data access is limited. It can be accessed by providing various visibility modes both for data
and member functions. there by providing data security by data hiding

10. Dymanic binding is supported by C++

11. .It supports all features of c language

12. It can be called as an incremental version of c language

Difference Between Procedure Oriented Programming (POP) & Object Oriented Programming

(OOP)

 Procedure Oriented Programming Object Oriented Programming

 1

program is divided into small parts

called functions.

program is divided into parts called

objects.

 2

Importance is not given to data but to

functions as well as sequence of actions

to be done.

Importance is given to the data rather

than procedures or functions because it

works as a real world.

 3 follows Top Down approach. OOP follows Bottom Up approach.

 4

It does not have any access specifier.

OOP has access specifiers named

Public, Private, Protected, etc.

5

Data can move freely from

function to function in the system.

objects can move and communicate with

each other through member functions.

6

To add new data and function in POP is

not so easy.

OOP provides an easy way to add new data

and function.

 Most function uses Global data for sharing In OOP, data can not move easily from

7 that can be accessed freely from function

to

function to function,it can be kept public or

function in the system.

private so we can control the access of data.

8

It does not have any proper way for hiding

data so it is less secure.

OOP provides Data Hiding so provides more

security.

 In OOP, overloading is possible in the form

of

9

Overloading is not possible.

Function Overloading and Operator

Overloading.

 Example of Procedure Oriented

10

Programming are : C, VB, FORTRAN,

Pascal.

Example of Object Oriented Programming

are : C++, JAVA, VB.NET, C#.NET.

Principles(or features) of object oriented programming:

1. Encapsulation

2. Data abstraction

3. Polymorphism

4. Inheritance

5. Dynamic binding

6. Message passing

Encapsulation: Wrapping of data and functions together as a single unit is known as encapsulation.
Bydefault data is not accessible to outside world and they are only accessible through the functions
which are wrapped in a class. prevention of data direct access by the program is called data hiding or
information hiding

Data abstraction :

Abstraction refers to the act of representing essential features without including the

back ground details or explanation. Classes use the concept of abstraction and are defined as a list of
attributes such as size, weight, cost and functions to operate on these attributes. They encapsulate all
essential properties of the object that are to be created.

The attributes are called as data members as they hold data and the functions which operate on these
data are called as member functions.

Class use the concept of data abstraction so they are called abstract data type (ADT)

Polymorphism: Polymorphism comes from the Greek words “poly” and “morphism”. “poly”
meansmany and “morphism” means form i.e.. many forms. Polymorphism means the ability to take
more than one form. For example, an operation have different behavior in different instances. The
behavior depends
upon the type of the data used in the operation.

Different ways to achieving polymorphism in C++ program:

1)Function overloading 2) Operator overloading

#include<iostream>usin

g namespace

std; int main()

{int a=4;

a=a<<2;

cout<<”a=”<<a<<endl;

return 0;

}

Inheritance: Inheritance is the process by which one object can acquire the properties of another.

Inheritance is the most promising concept of OOP, which helps realize the goal of constructing
software from reusable parts, rather than hand coding every system from scratch. Inheritance not only
supports reuse across systems, but also directly facilitates extensibility within a system. Inheritance
coupled with polymorphism and dynamic binding minimizes the amount of existing code to be
modified while enhancing a system.

When the class child, inherits the class parent, the class child is referred to as derived class (sub
class) and the class parent as a base class (super class). In this case, the class child has two parts: a
derived part and an incremental part. The derived part is inherited from the class parent. The
incremental part is the new code written specifically for the class child.

Dynamic binding:

Binding refers to linking of procedure call to the code to be executed in response to the call.
Dynamic binding(or late binding) means the code associated with a given procedure call in not known
until the time of call at run time.

Message passing:

An object oriented program consists of set of object that communicate with each other.

Objects communicates with each other by sending and receiving information .

A message for an object is a request for execution of a procedure and there fore
invoke the function that is called for an object and generates result

Benefits of object oriented programming (OOPs)

 �
Reusability: In OOP‟s programs functions and modules that are written by a user can be

reused byother users without any modification.
 �

Inheritance: Through this we can eliminate redundant code and extend the use of

existing classes.

� Data Hiding: The programmer can hide the data and functions in a class from other

classes. Ithelps the programmer to
 build the secure programs.

Reduced complexity of a problem: The given problem can be viewed as a collection of
differentobjects. Each object is responsible for a specific task. The problem is solved by interfacing
the objects. This technique reduces the complexity of the program design.

Easy to Maintain and Upgrade: OOP makes it easy to maintain and modify existing code as

newobjects can be created with small differences to existing ones. Software complexity can be easily
managed.

� Message Passing: The technique of message communication between objects makes the

interfacewith external systems easier.

Modifiability: it is easy to make minor changes in the data representation or the

procedures in an

OO program. Changes inside a class do not affect any other part of a program, since the only

public
interface that the external world has to a class is through the use of methods.

BASIC STRUCTURE OF C++ LANGUAGE : The program written in C++ language follows this
basicstructure. The sequence of sections should be as they are in the basic structure. A C program
should have one or more sections but the sequence of sections is to be followed.

1. Documentation section

2. Linking section

3. Definition section

4. Global declaration section & class declarations

 5.Member function definition

6.Main function

section main()

 {

Declaration section

 Executable section

}

1. DOCUMENTATION SECTION : comes first and is used to document the use of
logic orreasons in your program. It can be used to write the program's objective, developer and
logic details. Thedocumentation is done in C language with /* and */ . Whatever is written

between these two are called comments.

2. LINKING SECTION : This section tells the compiler to link the certain
occurrences ofkeywords or functions in your program to the header files
specified in this section.e.g. #include<iostream>

 using namespace std;

� directive causes the preprocessor to add the contents of the iostream file to the program. It

contains declarations for cout and cin.

cout is a predefined object that represents the standard output stream. The operator << is an

 insertion operator, causes the string in double quotes to be displayed on the screen.

 Insertion Operator variable

The statement cin>>n; is an input statement and causes the program to wait for the user to type in a
number. The number keyed is placed on the variable “n”. The identifier cin is a predefined object in
C++ that corresponds to the standard input stream. The operator >> is known as extraction operator. It
extracts the value from the keyboard and assigns it to the value variable on its right.

 Object Extraction operator variable

3. DEFINITION SECTION : It is used to declare some constants and assign them some value.

e.g. #define MAX 25

Here #define is a compiler directive which tells the compiler whenever MAX is found in

 the program replace it with 25.

cin >> 45.5

Keyboard

s creen

cout << “C++”

Object

4. GLOBAL DECLARATION SECTION : Here the variables and class definations which are

usedthrough out the program (including main and other functions) are declared so as to make them

global(i.e accessible to all parts of program). A CLASS is a collection of data and functions that act or

manipulate the data. The data components of a class are called data members and function

components of a class are called member functions

A class ca also termed as a blue print or prototype that defines the variable or functions
common to all objects of certain kind. It is a user defined data type

e.g. int i; //this declaration is done outside and before main()

SUB PROGRAM OR FUNCTION SECTION : This has all the sub programs or the functions

whichour program needs.

void display()

{ cout<<”C++ is better that
C”;

}

SIMPLE „C++‟ PROGRAM:

#include<iostream>

using namespace std;
void display()

{ cout<<”C++ is better that C”;

 } int
main()

{ display()

return
0;

}

6.MAIN FUNCTION SECTION : It tells the compiler where to start the execution

 from main()

{ point from execution starts

} main function has

two sections

1. declaration section : In this the variables and their data types are declared.

2. Executable section or instruction section : This has the part of program which actually

performs the task we need.

namespace:

namespace is used to define a scope that could hold global identifiers.

 ex:-namespace scope for c++ standard library.

A classes ,functions and templates are declared within the namespace named
std using namespace std;-->directive can be used.

 user defined name space:

syntax for defining name space is

 namespace namespace_name

{

//declarations of variables.functions,classes etc...

}

 #include<iostream>

using namespace std;
namespace sample

{` int m; void
display(int n)

 { cout<<"in namespace

N="<<n<<endl;

}

}

 using namespace sample;

int main()

{

int a=5;
m=100;

display(200);

cout<<"M in sample name space:"<<sample::m;
return 0;}

 #include<iostream>

This directive causes the preprocessor to add content of iostream file to the program.

some old versions of C++ used iostream.h .if complier does not support ANSI

 (american nation standard institute) C++ then use header file iostream.h

DATA TYPES:

A data type is used to indicate the type of data value stored in a variable. All C compilers
support a variety of data types. This variety of data types allows the programmer to select
the type appropriate to the needs of the application as well as the machine.

ANSI C supports the following classes of data types:

1.Primary (fundamental) data types.

Primary data types:

 1.integer data type

 2.character data type

 3.float point data type
 4.Boolean data type

 5.void data type

integer data type:-

This data type is used to store whole numbers. These numbers do not contain the decimal part. The
size of the integer depends upon the world length of a machine (16
machine, the range of integer values is
int. C provides control over range of integer values and storage space occ
through the data types: short int, int, long int in both signed and unsigned forms.

Signed integers: (16-bit machine):

A signed integer uses 1 bit for sign and 15 bits for the magnitude of the number

MSB(most significant bit) =

Representation of negative number :

1.Primary (fundamental) data types.

This data type is used to store whole numbers. These numbers do not contain the decimal part. The
eger depends upon the world length of a machine (16-bit or 32

machine, the range of integer values is - 32,768 to +32,767.integer variables are declared by keyword
int. C provides control over range of integer values and storage space occupied by these values
through the data types: short int, int, long int in both signed and unsigned forms.

A signed integer uses 1 bit for sign and 15 bits for the magnitude of the number

MSB(most significant bit) = 100(10) 00000000001100100(2)

Representation of negative number : -100(10)=1111111110011100(2)

This data type is used to store whole numbers. These numbers do not contain the decimal part. The
bit or 32-bit). On a 16-bit

32,768 to +32,767.integer variables are declared by keyword
upied by these values

1

5 14

13 12

11 10 9 8 7 -1*2 +1*2 +1*2 +1*2 +1*2 +1*2 +1*2 +1*2

+1*2 +

 6 5 4 3 2 1 0

0*2 +0*2 +1*2 +1*2 +1*2 +0*2 +0*2

=-32768+16384+8192+4096+2048+1024+512+256+128+0+0+26+8+4+0+0 =-

100(10)

NOTE: Signed bit (MSB BIT): 0 represents positive integer, 1 represents negative numbers

Unsigned integers: Unsigned integers use all 16 bits to store the magnitude. Stores numbers does not

have anysign & Size qualifier and range of integer data type on a 16-bit and machine are shown in the

table:

MEMORY REQUIRED

RANGE

DATA TYPE

OR STORAGE SIZE IN

BYTES

 FORMAT

SPECIER

TURBO C GCC/

COMPILERS

TURBO C GCC

(16 BIT)

IN

LINUX

(32

BIT)

(16 BIT)

(32 BIT)

short int

-32768

-32768

or

signed short

int

2

2

To

153276715

 (-2 to +2 -1)

 To

32767

 15 15

 (-2 to +2 -1)

%hd

short int

0 to 65535

 0 to 65535

or

signed

short int

2

2

(0 to +2 -1)

 (0 to +2 -1)

%hu

signed int

-32768

-2,147,843,648

%d

or

int

2

4

To

153276715

 (-2 to +2 -1)

 to

2,147,843,647

 31 31

 (-2 to +2 -1)

or

%i

unsig

ned int

2

4

0 to 65535

16

 (0 to +2 -1)

 0 to 4,294,967,295

32

 (0 to2 -1)

%u

long int -2,147,843,648 -2,147,843,648

or

signed long

int

 4

4

to

2,147,843,647

 31 31

 (-2 to +2 -1)

 to

2,147,843,647

 31 31

 (-2 to +2 -1)

%ld

unsigned

long int

4

4

0 to

4,294,967,295

32

(0 to2 -1)

 0 to 4,294,967,295

32

 (0 to2 -1)

%lu

long long

int or

-

9223372036854775808

signed long

long

int

Not
supported

8

 To

9223372036854775807

 63 63

 (-2 to +2 -1)

%Ld

Character data type:(char)

A single character can be defined as a character data type. Character data type occupies one byte

of memory for storage of character. The qualifiers signed or unsigned can be applied on char
data type. char is the key word used for declaring variables size and range of character data type
on 16 bit or 32 bit machine can be shown below

Data type MEMORY REQUIRED RANGE FORMAT SPECIER

 OR STORAGE SIZE (in

bytes)

char or signed char 1

7 -

128 to 127(-2 7 to 2

-1) %c

Unsigned signed char 1 0 to 256 (0 to 2 -1) %c

Floating Point Types:

Floating point number represents a real number with 6 digits precision occupies 4 bytes of
memory. Floating point variables are declared by the keyword float.

Double floating point data type occupies 8 bytes of memory giving 14 digits of precision.

These are also known as double precision numbers. Variables are declared by keyword double

long double refers to a floating point data type that is often more precise than double precision.

Boolean or logical data type is a data type, having two values (usually denoted true and false),
intended to represent the truth values of logic and Boolean algebra. It is named after George Boole,

who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is the
primary result of conditional statements, which allow different actions and change control flow
depending on whether a programmer -specified Boolean condition evaluates to true or false.

C99 added a Boolean (true/false) type which is defined in the <stdbool.h>

header Boolean variable is defined by kkey word bool; Ex:

bool b;

where b is a variable which can store true(1) of false (0)

Void type

The void type has no values. This is usually used to specify the return type of functions. The type of
the functionsaid to be void when it does not return any value to the calling function. This is also used

for declaring general purpose pointer called void pointer.

Derived data types.

Derived datatypes are Arrays , pointer and references are examples for derived data types. User-

defined data types:

they The data types defined by the user are known as the user-defined data
types. They are structure,union,class and enumeration

C++ Tokens

IDENTIFIERS: Identifiers are the names given to various program elements such as variables,
functions and arrays. These are user defined names consisting of sequence of letters and digits.

Rules for declaring identifiers:
 �The first character must be an alphabet or underscore.

 �It must consist of only letters, digits and underscore.
 �Identifiers may have any length but only first 31 characters are significant. �It must

not contain white space or blank space.

�We should not use keywords as

identifiers. �Upper and lower case

letters are different.

Example: ab Ab aB AB are treated differently Examples of

valid identifiers: a, x, n, num, SUM, fact, grand_total, sum_of_digits, sum1

Examples of Invalid identifiers:$amount,³num´, grand-total, sum of digits, 4num.

Bo olean data type: -

$amount : Special character is not permitted grand-total :
hyphen is not permitted. sum of digits : blank spaces
between the words are not allowed.

4num : should not start with a number (first character must be a letter or underscore

Note: Some compilers of C recognize only the first 8 characters only; because of this they are
unableto distinguish identifiers with the words of length more than eight characters.

Variables:A named memory location is called variable.

 OR

It is an identifier used to store the value of particular data type in the memory.

Since variable name is identifier we use following rules which are same as of identifier

Rules for declaring Variables names:

 �The first character must be an alphabet or underscore.
� It must consist of only letters, digits and underscore.
� Identifiers may have any length but only first 31 characters are significant.
� It must not contain white space or blank space.
� We should not use keywords as identifiers.

�Upper and lower case letters are different. �Variable names must be unique in the

given scope

 Ex:int a,b,a;//is in valid

Int a,b;//is valid

Variable declaration: The declaration of variable gives the name for memory location and its

size andspecifies the range of value that can be stored in that location.

Syntax:

Data type variable name;

Ex: a 2000

int a=10;

float x=2.3; x 2.300000 5000

KEYWORDS :

There are certain words, called keywords (reserved words) that have a predefined

meaning in „C++‟ language. These keywords are only to be used for their intended purpose and

not as identifiers. The following table shows the standard „C++‟ keywords

auto break case char const continue

default do double else enum extern

float for goto if int long

register return short signed sizeof static

struct switch typedef union unsigned void

volatile while class friend new delete

this public private protected inline try

throw catch template

10

CONSTANTS:

Constants refer to values that do not change during the execution of a program.

Constants can be divided into two major categories:

1.Primary constants:

a)Numeric constants

� Integer constants.

� Floating-point (real)
 constants. b)Character constants

� Single character constants �String

constants 2.Secondary constants:
� Enumeration constants.

 �Symbolic constants.
 �Arrays, unions, etc.

Rules for declaring constants:

1.Commas and blank spaces are not permitted within the constant.
2.The constant can be preceded by minus (-) signed if required.

3.The value of a constant must be within its minimum bounds of its specified data type.
Integer constants: An integer constant is an integer-valued number. It consists of
sequence ofdigits. Integer constants can be written in three different number systems:

1.Decimal integer (base 10).

2.Octal integer (base 8).

3.Hexadecimal (base 16).

Decimal integer constant:It consists of set of digits, 0 to 9.

 Valid declaration: 0, 124, -56, + 67, 4567 etc.

 Invalid declaration: $245, 2.34, 34 345, 075.

23,345,00. it is also an invalid declaration.

Note: Embedded spaces, commas, characters, special symbols are not allowed between digits

 �

They can be preceded by an optional + or ± sign.

Octal integer: It consists of set of digits, 0 to 7.

Ex: 037, 0, 0765, 05557 etc. (valid
representation) It is a sequence of digits preceded
by 0.

Ex: Invalid representations

0394: digit 9 is not permitted (digits 0 to 7 only)

235: does not begin with 0. (Leading number must be 0).

Hexadecimal integer: It consists of set of digits, 0 to 9 and alphabets A, B, C, D, E,
andF. Hexadecimal integer is a sequence of digits preceded by 0x or 0X. We can

also use a through f instead of A to F.

Ex: 0X2, 0x9F, 0Xbcd, 0x0, 0x1. (Valid representations)
Ex: Invalid representations: 0af, 0xb3g, 0Xgh.

0af: does not begin with 0x or 0X.

0xb3g, 0Xgh: illegal characters like g, h. (only a to f are allowed)

The magnitude (maximum value) of an integer constant can range from
zero to some maximum value that varies from one computer to another.

Typical maximum values for most personal computers are: (16-bit machines)

Decimal integer constant: 32767 (215-1)

Octal integer constant: 077777

Hexadecimal integer constant: 0X7FFF

Note: The largest value that can be stored is machine dependent.

Floating point constants or Real constants : The numbers with fractional parts are called real

constants. These are the numbers with base-10 which contains either a decimal part or exponent (or
both). Representation: These numbers can be represented in either decimal notation or
exponentnotation (scientific notation).

Decimal notation: 1234.56, 75.098, 0.0002, -0.00674 (valid notations)

Exponent or scientific notation:

General form: Mantissa e exponent

Mantissa: It is a real number expressed in decimal notation or an integer notation.

Exponent: It is an integer number with an optional plus (+) or minus (-) sign.

E or e: The letter separating the mantissa and decimal part.
Ex: (Valid notations)

3

1.23456E+3 (1.23456×10)

1

7.5098 e+1 (7.5098×10)

-4

 2E-4 (2×10)

These exponential notations are useful for representing numbers that are either very large

or very small. Ex: 0.00000000987 is equivalent to9.87e-9

Character constants:-

Single character constants:It is character(or any symbol or digit) enclosed within single quotes.

Ex: „a ‟ „1‟ „*‟

Every Character constants have integer values known as ASCII values

ASCII:- ASCII stands for American Standard Code for Information Interchange. Pronounced ask-ee,
ASCII is acode for representing English characters as numbers, with each letter assigned a number
from 0 to 255.Computers can only understand numbers, so an ASCII code is the numerical
representation of a character such as 'a' or '@' or an action of some sort.A SCII codes represent text in
computers, communications equipment, and other devices that use text. Most modern character-
encoding schemes are based on ASCII, though they support many additional characters.
Below is the ASCII character table and this includes descriptions of the first 32 non -

printing characters. String constants or string literal:

String constant is a sequence of zero or more characters enclosed by double quotes.

Example:

 “MRCET” “12345” “*)(&%”

Escape Sequences or Backslash Character Constants

C language supports some nonprintable characters, as well as backslash (\) which can be
expressed as escape sequences. An escape sequence always starts with backslash followed by one
or more

special characters.

For example, a new line character is represented "\n" or endl

OPERATORS AND EXPRESSIONS

An operatoris a symbol which represents a particular operation that can be
performed on data. An operand is the object on which an operation is performed.

By combining the operators and operands we form an expression. An expression is
a sequence of operands and operators that reduces to a single value.

C operators can be classified as

1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment or Decrement operators

6. Conditional operator

7. Bit wise operators

8. unary operator

9. Special operators

10.Additional operators in c++

1.ARITHMETIC OPERATORS : All basic arithmetic operators are present in C.

 Operator meaning

 + add

 - subtract

 * multiplication

 / division

 % modulo division(remainder)

An arithmetic operation involving only real operands(or integer operands) is called real

arithmetic(or integer arithmetic). If a combination of arithmetic and real is called mixed mode

arithmetic.

/*C program on Integer Arithmetic Expressions*/

#include<iostraem.h>

void main()

{ int
a, b;

cout<"Enter any two

integers"; cin>>a>>b;
cout<<"a+b"<< a+b;

cout<<"a-b"<< a-b;
cout<<"a*b"<< a*b;
cout<<"a/b"<< a/b;

cout<<"a%b"<< a%b;

}

OUTPUT:

a+b=23 a-
b=17

a*b=60
a/b=6
a% b=2

2.RELATIONAL OPERATORS : We often compare two quantities and depending on their

relationtake certain decisions for that comparison we use relational operators.

operator meaning

 <

>

<=

>=

==

 !=

is less than

is greater than

is less than or equal to

 is greater than

or equal to

is equal to is

not equal to

/* C program on relational operators*/

#include<iostream.h>
void main()

{ int

a,b;
clrscr(
);

cout<<"Enter a, b

values:"; cin>>a>>b;
cout<<"a>b"<< a>b;
cout<<"a>=b"<< a>=b;
cout<<"a<b"<< a<b;

cout<<"a<=b"<< a<=b;

cout<<"a==b"<< a==b;

cout<<"a!=b"<<
a!=b; }

OUTPUT:

Enter a, b values:
5 9 a>b: 0 //false
a<b: 1 //true
a>=a: 1 //true

a<=b: 1 //true

a==b: 0 //false

a!= b: 1 //true

3.LOGICAL OPERATORS:

Logical Data: A piece of data is called logical if it conveys the idea of true or false. In C++ we use int

data type to represent logical data. If the data value is zero, it is considered as false. If it is non -zero

(1 or any integer other than 0) it is considered as true. C++ has three logical operators for combining

logical values and creating new logical values:

Note:Below

program

works in

compiler that

support C99

standards

#include<iostream.h>
#include<stdbool.h>

int main()

{ bool
a,b;

/*logical and*/

a=0;b=0;

cout<<" a&&b "<<

a&&b<<endl; a=0;b=1;

cout<<" a&&b "<<

a&&b<<endl; a=1;b=0;

cout<<" a&&b "<<

a&&b<<endl; a=1;b=1;

cout<<" a&&b "<<

a&&b<<endl;

/*logical or*/
a=0;b=0;

cout<<" a||b "<< a||b<<endl;

a=0;b=1;

cout<<" a||b "<< a||b<<endl;

a=1;b=0;

cout<<" a||b "<< a||b<<endl;

a=1;b=1;

cout<<" a||b "<< a||b<<endl;

/*logical not*/

a=0;

cout<<" a||b "<< a||b<<endl;

a=1;

cout<<" a||b "<< a||b<<endl;

return 0;

}

OUTPUT:

0&&0=0

0&&1=0

1&&0=0

1&&1=1

0||0=0

0||1=1

1||0=1

1||1=1

!0 =1

!1 =0

4.ASSIGNMENT OPERATOR:

The assignment expression evaluates the operand on the right side of the operator (=) and
places its value in the variable on the left.

Note: The left operand in an assignment expression must be a single variable.
There are two forms of assignment:

•Simple assignment

•Compound assignment

Simple assignment :

In algebraic expressions we found these expressions.

 Ex: a=5; a=a+1; a=b+1;

Here, the left side operand must be a variable but not a constant. The left side variable
must be able to receive a value of the expression. If the left operand cannot receive a
value and we assign one to it, we get a compile error.

Compound Assignment:

A compound assignment is a shorthand notation for a simple assignment. It requires that

the left operand be repeated as a part of the right expression. Syntax: variable
operator+=value

Ex:

A+=1; it is equivalent to A=A+1;

Advantages of using shorthand assignment operator:

1. What appears on the left-hand side need not be repeated and therefore it becomes easier to
write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

5.INCRE

MENT

(++) AND

DECREM

ENT (--) OPERATORS:

The operator ++ adds one to its operand where as the operator - - subtracts one from its operand. These
operators are unary operators and take the following
form:

Both the increment and decrement operators may
either precede or follow the operand.

Postfix Increment/Decrement :(a++/a--)

In postfix increment (Decrement) the value is incremented

(decremented) by one. Thus the a++ has the same effect as

a=a+1; a--has the same effect as a=a-1.

The difference between a++ and a+1 is, if ++ is after the operand, the increment takes place
after the expression is evaluated.

The operand in a postfix expression must be a variable.

Ex1:

int
a=5;

B=a++; Here the value of B is 5. the value of a is 6.

Ex2:

int x=4; y=x--; Here the value of y is 4, x value is 3

Prefix Increment/Decrement (++a/ --a)

In prefix increment (decrement) the effect takes place before the expression
that contains the operator is evaluated. It is the reverse of the postfix
operation. ++a has the same effect as a=a+1.

--a has the same effect as a=a-1.

Ex: int b=4;
A= ++b;

In this case the value of b would be 5 and A would be 5.

The effects of both postfix and prefix increment is the same: the variable is
incremented by 1. But they behave differently when they used in expressions as
shown above. The execution of these operators is fast when compared to the
equivalent assignment statement.

#include<iostream.h>

 int main()

{ int
a=1;

int b=5;
++a;

cout<<"a="<<a<<endl;

--b;

cout<<"b="<<b<<endl;
cout<<"a="<<a++<<endl;

cout<<"a="<<a<<endl; cout<<"b="<<b--
<<endl;

cout<<"b="<<b<<end
l; return 0; } a=2 b=4

a=2 a=3 b=4 b=3

6.CONDITIONAL OPERATOR OR TERNARY OPERATOR:

A ternary operator requires two operands to operate

Syntax:

#include<iostream.h> void main()

{ int a, b,c; cout<<"Enter a and b values:";

cin>>a>>b;

 c=a>b?a:b;

cout<<"largest of a and b is "<<c;

}

Enter a and b values:1 5
largest of a and b is 5

7.BIT WISE OPERATORS : C supports special operators known as bit wise operators for
manipulationof data at bit level. They are not applied to float or double.

operator meaning

&

Bitwise AND

Bitwise AND operator (&)

The bitwise AND operator is a binary operator it requires two integral operands (character or integer).
It does a bitwise comparison as shown below:

Shift Operators

The shift operators move bits to the right or the left. These are of two types:

. •Bitwise shift right operator

. •Bitwise shift left operator

Bitwise shift right operator

 ^

<<

>>

~

Bitwise exclusive

OR

left shift

right shift

one's complement

It is a binary operator it requires two integral operands. The first operand is the value to be
shifted and the second operand specifies the number of bits to be shifted. When bits are shifted
to right,the bits at the right most end are deleted and a zero

#include<iostream.h>
void main()

{ int
x,shift;

cout<<”Enter a number:”);
cin>>x;

 cout<<”enter now many times to right shift: “;
cin>>shift;

 cout<<”Before Right
Shift:”<<x; x=x>>shift; cout<<”After
right shift:”<<x; }

Run1:

Enter a number:8

enter now many times to right shift:1

Before Right Shift:8

After right shift:4

ERATORS

It is a binary operator it requires two integral operands. The first operand is the value to be
shifted and the second operand specifies the number of bits to be shifted. When bits are shifted
to right,the bits at the right most end are deleted and a zero is inserted at the MSB bit.

cout<<”enter now many times to right shift: “;

Shift:”<<x; x=x>>shift; cout<<”After

enter now many times to right shift:1

It is a binary operator it requires two integral operands. The first operand is the value to be
shifted and the second operand specifies the number of bits to be shifted. When bits are shifted

is inserted at the MSB bit.

8

.
S
P

E
C
I

A
L

O
P

These operators which do not fit in any of the above classification are ,(comma), sizeof, Pointer
operators(& and *) and member selection operators (. and ->). The comma operator is used to link
related

expressions together.

Operators in c++: All above operators of c language are also valid in c++.New operators

introduced inc++ are

Sno Operator Symbol

1. Scope resolution operator ::

2. Pointer to a member declarator ::*

3. Pointer to member operator ->*,->

4. Pointer to member operator .*

5. new Memory allocating operator

6. delete Memory release operator

9 .UNARY OPERATOR : operator which operates
on single operand is called unary ope rator

7. endl Line feed operator

8. setw Field width operator

9. insertion <<

10. Extraction >>

1.Scope Resolution operator:

Scope:-Visibility or availability of a variable in a program is called as scope. There are two types of

scope. i)Local scope ii)Global scope

Local scope: visibility of a variable is local to the function in which it is

declared. Global scope: visibility of a variable to all functions of aprogram
Scope resolution operator in “::” .

This is used to access global variables if same variables are declared as
local and global PROGRAM1.2:- #include<iostream.h> int a=5; void

main()

{ int a=10; cout<<”Local
a=”<<a<<endl;

cout<<”Global a=”<<::a<<endl;

}

Expected output:

Local a=10

Global a=5

Member Dereferencing operator: -

1. Pointer to a member declarator ::*

2. Pointer to member operator ->*,->

3. Pointer to member operator .*

 Pointer to a member declarator ::*

This operator is used for declaring a pointer to the member

of the class #include<iostream.h> class sample

{public: int x; };

 int main()

 { sample s; //object

 int sample ::*p;//pointer decleration

s.*p=10; //correct
cout<<s.*p;

}

Output:10

2.Pointer to member operator ->*

#include<iostream.h>

class sample

{ public:

int x;

void display()

{

cout<<"x="<<x<<endl;

}
}; int
main()

 {

 sample s; //object

sample *ptr;

int
sample::*f=&sample::x;
s.x=10; ptr=&s;

cout<<ptr->*f;

ptr->display();

 }

3. Pointer to member operator

 .* #include<iostream.h>
class sample

{ public: int x;

}; int

main()

{ sample s; //object

int sample ::*p;//pointer decleration
s.*p=10; //correct

cout<<s.*p;

 }

Manipulators:

Manipulators are the operators used to format the data that is to be displayed on screen.The most

commonly used manipulators are endl and setw

endl:-it is used in output statement and inserts a line feed. It is similar to new line character
(“\n”) ex:

………………..

cout<<”a=2”<<endl;

cout<”name=sunil”<<endl;

……………….

Output: a=2 name=sunil setw:- this manipulator allows a specified width for a field
that is to be printed on screen

and by default the value printed is right justified.This function is available in header file

iomanip.h

#include<iostream.h>

#include<iomanip.h>
using namespace std;

int main()

{

int s=123;

cout<<"s="<<setw(10)<<s ;

}

output

s= 123

Insertion (<<) and Extraction (>>)

operators: the operators are use with output and
input objects ex:

cout<<”Enter n”;

cin>>n

Control statements:-The flow of execution of statements in a program is called as control.

Controlstatement is a statement which controls flow of execution of the program. Control statements

are classified

into following categories.

1.Sequential control statements

2. conditional control statement

3.Unconditional control statements

2.Conditional control statements

:Statements that are executed when a
condition istrue. These statements are

divided into three categories. they are

 1.Decision making statements

2.Switch case control statement or

 3.Loop control statements or repetations

1.Decision making statements:- These statements are used to control the flow of execution of a
programby making a decision depending on a condition, hence they are named as decision making

statements. Decision making statements are of four types

1.Simple if

2.if else

3.nested if else

4.If else ladder

1.Simple if statement: if the test expression is true then if statement executes
statements that

immediately follow if

 Syntax:

If(test expression)

{

List of statements;

}

/*largest of two numbers*/

#include<stdio.h> int main()

{ int a,b; cout<<“Enter any two integers:”; cin>>a>>b; if(a>b) cout<<“A is larger than
B\n A=”<<a;

if(b>a) cout<<“B is larger than A\n
A=”<<b; return 0;

}

1.Sequential control statements:-

statements ensures that the

statements) are executed in the same

they appear in the program. i.e. By

executes the statements in the

program order.

(type) expression;

Or

type (expression); Sequential control

instructions(ororder

in which default

system in

sequential

2. if –else statement:

If test expression is true block of statements following if are executed and if test
expression is false then statements in else block are

executed if (test expression)

{ statement block1;

} else

{ statement block2;

}

/*largest of two numbers*/

#include<iostream.h> int main()

{ int a,b;

cout<<”Enter any two integers:”;
cin>>a>>b;

if(a>b) cout<<“A is larger than B\n A=”<<a;

else

 cout<<“B is larger than A\n A=”<<b;

return 0;

}

3.Nesting of if-else statements It's also possible to nest one if statement inside another. When a series

of decisionsare

to be made.

If –else statement placed inside
another if else statement

Syntax:

If(test expression) {If(test
expression) {

 //statements

} else

{ //statements

}

} else

{If(test expression) {

//statements

 }

else

{ //statements

}

}

/*largest of three numbers*/

#include<iostream.h>

#include<conio.h
> int main()

{ int
a,b,c;

cout<<"Enter a,b,c values:";

cin>>a>>b>>c;

if(a>b)

{ if(a>c)

{ cout<<"A ia largest among three
numbers\n"; cout"A= "<<a;

}
els
e

{ cout<<"C ia largest among three
numbers\n"; cout<<"c= "<<c;

}

}

 else

{if(b>c)

{ cout<<"B ia largest among three
numbers\n"; cout<<"B="<<b;

 }
els
e

{ cout<<"C ia largest among three
numbers\n"; cout<<"c="<<c;

}

}
getch();
return 0;

}

4.if else ladder

 if(condition1)

statement1;

else if(condition2)

statement 2;

else if(condition3)
statement n;

else default statement.

statement-x;

The nesting of if-else depends upon the conditions with which we have to deal.

The condition is evaluated from top to bottom.if a condition is true the statement associated with

it is executed. When all the conditions become false then final else part containing default

statements will be executed.

#include<iostream.h>

 void main()

{ int

per;

cout<<”Enter percentage”; cin>>per;
 if(per>=80) cout<<”Secured

Distinction”<<endl; else if(per>=60)
cout<<”Secured First

Division”<<endl; else if(per>=50)
cout<<”Secured Second
Division”<<endl; else if(per>=40)

 cout<<”Secured Third

Division”<<endl; else
cout<<”Fail”<<endl

}

THE SWITCH STATEMENT or MULTIWAY SELECTION :

In addition to two-way selection, most programming languages provide another selection concept

known as multiway selection. Multiway selection chooses among several alternatives. C has two

different ways to implement multiway selection: the switch statement and else-if construct

If for suppose we have more than one valid choices to choose from then we
can use switch statement in place of if statements. switch(expression)

{.

case value-1:

block
-1
break

;

case value-2:

 block-2

break;

default:

default block;

 }

/*program to simulate a simple calculator */

#include<iostream.
h> int main() {

float a,b; char opr;

cout<<"Enter number1 operator number2
: "; cin>>a>>oper>>b; switch(opr)

{

case '+':

cout<<"Sum : "<<(a + b)<<endl;

break;

case '-': cout<<"Difference : "<<(a -b)<<endl;
break;

case '*': cout<<”Product : "<<a * b<<endl;

break;

case '/': cout<<”Quotient :"<<(a / b)<<endl;
break;

default: cout<<”Invalid Operation!"<<endl;

}
return
0;

}

Loop control statements or repetitions:

A block or group of statements executed repeatedly until some condition is satisfied is called

Loop.

The group of statements enclosed within curly brace is called block or compound statement.

We have two types of looping structures.

One in which condition is tested before entering the statement block called entry control.

The other in which condition is checked at exit called exit controlled loop.

Loop statements can be divided into three categories as given below

1.while loop statement

2.do while loop statement

3.for loop statement

1.WHILE STATEMENT :

 While(test condition)

{

 body of the loop

 }

It is an entry controlled loop. The condition is evaluated
and if it is true then body of loop is executed
body the condition is once again evaluated and if is true body is
executed once again. This goes on until test condition becomes
false.

c program to find sum of n natural numbers */

#include<iostream.h> int main() {

int i = 1,sum = 0,n; cout<<"Enter N"<<end;

while(i<=n)

{ sum =
sum + i; i =

i + 1;

}

 cout<<”Sum of first”<<n<”natural numbers

 is:”<<sum<<endl; return 0;

}

2.DO WHILE STATEMENT :

The while loop does not allow body to be
executed if test condition is false. The do while
is an exit controlled loop and its body is
executed at least once.

 do

{ body

}while(test condition);

/*c program to find sum of n natural numbers */

#include<stdio.
h> int main() {

int i = 1,sum = 0,n;

cout<<”Enter
N"<<endl; cin>>n

 do{

sum = sum +

It is an entry controlled loop. The condition is evaluated
and if it is true then body of loop is executed. After execution of
body the condition is once again evaluated and if is true body is
executed once again. This goes on until test condition becomes

c program to find sum of n natural numbers */

int i = 1,sum = 0,n; cout<<"Enter N"<<end; cin>>n;

cout<<”Sum of first”<<n<”natural numbers

is:”<<sum<<endl; return 0;

The while loop does not allow body to be
executed if test condition is false. The do while
is an exit controlled loop and its body is

/*c program to find sum of n natural numbers */

i; i = i + 1;

} while(i<=n);

cout<<”Sum of first”<< n<<” natural numbers

 is:”<<sum; return 0;

}

Note: if test condition is false. before the loop is being executed then While loop executes
zero number of times where as do--while executes one time

3.FOR LOOP : It is also an entry control loop that provides a more concise structure

Syntax:

for(initialization; test expression; increment/decrement)

{ statements;

 }

For statement is divided into three expressions
each is separated by semi colon;

1.initilization expression is used to initialize
variables 2.test expression is responsible of
continuing the loop. If it is true, then the program
control flow goes inside the loop and executes the
block of statements associated with it .If test
expression is false loop terminates
3.increment/decrement expression consists of
increment or decrement operator This process continues until test condition satisfies.

/*c program to find sum of n natural numbers */

#include<stdio.h>

int main()

{

int i ,sum = 0,n;
cout<<”Enter N";
cin>>n;

 for(i=1;i<=n;i++)

{ sum = sum + i;

}

 cout<<“Sum of first”<<n<<” natural numbers

 is:%d”<<sum; return 0;

}

Nested loops:Writing one loop control statement within another loop control statement is called

nested loopstatement

Ex:

for(i=1;i<=10;i++)

for(j=1;j<=10;j++)

cout<<i<<j;

/*program to print prime numbers upto a given number*/

#include<stdio.h>
#include<conio.h>

void main()

{ int
n,i,fact,j;

clrscr();

cout<<"enter the number:";

cin>>n
for(i=1;i<=n;i++)

{fact=0;

//THIS LOOP WILL CHECK A NO TO BE PRIME NO. OR

NOT. for(j=1;j<=i;j++)

{ if(i%j==0)

fact++;

}

if(fact==2
)

 cout<<i<<”\t”;

}
getch();

}

Output:

Enter the number : 5

2 3 5

Unconditional control statements:

Statements that transfers control from on part of the program to another part
unconditionally Different unconditional statements are

1)goto

2)break

 3)continue

1.goto :- goto statementis used for unconditional branching or transfer of the program execution

tothe labeled statement.

/*c program to find sum of n natural numbers */

#include<stdio.

h> int main() {

int i ,sum = 0,n;
cout<<”Enter

N"; cin>>n;
i=1; L1:

sum = sum + i;

i++; if(i<=n)
goto L1;

 cout<<“Sum of first “<<n<” natural numbers

 is”<<sum; return 0;

}

break:-when a break statement is encountered within a loop ,loop is immediatelyexited and the

program continues with the statements immediately following loop

/*c program to find sum of n natural numbers */

#include<stdio.h>
int main()

{

int i ,sum = 0,n;
cout<<”Enter

N"; cin>>n;
i=1; L1:

sum = sum + i;

i++;
if(i>n)

break;

goto L1;

 cout<<”Sum of first”<<n<<”natural numbers is:

 ”<<sum; return 0;

}

Continue:It is used to continue the iteration of the loop statement by skipping the statementsafter

continue statement. It causes the control to go directly to the test condition and then to continue the

loop.

/*c program to find sum of n positive numbers read from keyboard*/

#include<stdio.h>

int main()

{

int i ,sum = 0,n,number;
cout<<Enter N";
cin>>n;

for(i=1;i<=n;i++)

{ cout<<“Enter a number:”;

cin>>number;

if(number<0) continue;

sum = sum + number;

}

cout<<“Sum of”<<n<<” numbers is:”<<sum;
return 0;

}

