

B.Sc –COMPUTER SCIENCE

II YEAR III SEMESTER

OBJECT ORIENTED PROGRAMMING WITH C++

 Handled by

 K.Shanmugavadivu

UNIT -2

FUNCTION PROTOTYPING

A function is a set of statements that take inputs, do some specific computation and

produces output.

The idea is to put some commonly or repeatedly done task together and make a function

so that instead of writing the same code again and again for different inputs, we can call

the function.

The general form of a function is:

return_type function_name([arg1_type arg1_name, ...]) { code }

#include <iostream>

using namespace std;

int max(int x, int y)

{

 if (x > y)

 return x;

 else

 return y;

}

int main() {

 int a = 10, b = 20;

 // Calling above function to find max of 'a' and 'b'

 int m = max(a, b);

 cout << "m is " << m;

 return 0;

}

Output: m is 20

Parameter Passing to functions

The parameters passed to function are called actual parameters. For example, in the

above program 10 and 20 are actual parameters.

The parameters received by function are called formal parameters. For example, in the

above program x and y are formal parameters.

There are two most popular ways to pass parameters.

Pass by Value: In this parameter passing method, values of actual parameters are

copied to function’s formal parameters and the two types of parameters are stored in

different memory locations. So any changes made inside functions are not reflected in

actual parameters of caller.

Pass by Reference or call by reference Both actual and formal parameters refer to

same locations, so any changes made inside the function are actually reflected in actual

parameters of caller.

Parameters are always passed by value in C. For example. in the below code, value of x

is not modified using the function fun().

INLINE FUNCTIONS:

Definition:

An inline function is a function that is expanded in line when it is invoked. Inline

expansion makes a program run faster because the overhead of a function call and

return is eliminated. It is defined by using key word “inline”

Necessity of Inline Function:

�One of the objectives of using functions in a program is to save some memory

space, which becomes appreciable  when a function is likely to be called many

times.

�

Every time a function is called, it takes a lot of extra time in executing a series of

instructions for tasks such as jumping to the function, saving registers, pushing

arguments into the stack, and returning to the calling function.

�

When a function is small, a substantial percentage of execution time may be spent in

such overheads.

C++ proposes a new feature called inline function.

General Form:

inline function-header

{ function body;

}

Eg:

#include<iostream.h> inline float mul(float x, float y)

{

return (x*y);

}

inline double div(double p, double q)

{ return (p/q);

} int main()

{

float a=12.345; float b=9.82; cout<<mul(a,b); cout<<div(a,b); return 0;

}

Properties of inline function:

1.Inline function sends request but not a command to compiler

 2.Compiler my serve or ignore the request

3.if function has too many lines of code or if it has complicated logic then it is executed

as normal function

Situations where inline does not work:

� 

A function that is returning value , if it contains switch ,loop or both then it is treated as

normal function. 

if a function is not returning any value and it contains a return statement then it is treated as

normal function

If function contains static variables then it is executed as normal function

� 

If the inline function is declared as recursive function then it is executed as normal function.

Default Arguments

In C++ programming, we can provide default values for function parameters.

If a function with default arguments is called without passing arguments, then the

default parameters are used.

However, if arguments are passed while calling the function, the default arguments are

ignored.

only provide the default values from right to left as a parameter in the function. Default

arguments plays important role when some arguments always have same value.

const Arguments

By constant argument, it is meant that the function cannot modify these arguments. In

order to make an argument constant to a function, we can use the keyword const as

shown : int sum (const int a, const int b); The qualifier const in function prototype tells

the compiler that the function should not modify the argument. The constant arguments

are useful when functions are called by reference.

Function Overloading

Function overloading is a C++ programming feature that allows us to have more than

one function having same name but different parameter list, when I say parameter list, it

means the data type and sequence of the parameters, for example the parameters list

of a function myfuncn(int a, float b) is (int, float) which is different from the

function myfuncn(float a, int b) parameter list (float, int). Function overloading is

a compile-time polymorphism.

Now that we know what is parameter list lets see the rules of overloading: we can have

following functions in the same scope.

sum(int num1, int num2)

sum(int num1, int num2, int num3)

sum(int num1, double num2)

#include <iostream>

using namespace std;

class Addition {

public:

 int sum(int num1,int num2) {

 return num1+num2;

 }

 int sum(int num1,int num2, int num3) {

 return num1+num2+num3;

 }

};

int main(void) {

 Addition obj;

 cout<<obj.sum(20, 15)<<endl;

 cout<<obj.sum(81, 100, 10);

 return 0;

}

Output:

35

191

FRIEND FUNCTIONS:The private members cannot be accessed from outside the

class. i.e.… a non member function cannot have an access to the private data of a

class. In C++ a non member function can access private by making the function friendly

to a class.

Definition:

A friend function is a function which is declared within a class and is defined outside the

class. It does not require any scope resolution operator for defining . It can access

private members of a class. It is declared by using keyword “friend”

Ex:

class sample

{int x,y; public:

sample(int a,int b);

friend int sum(sample s);

};

sample::sample(int a,int b)

{

x=a;y=b; }

int sum(samples s)

{ int sum; sum=s.x+s.y; return 0;

}

void main()

{

Sample obj(2,3); int res=sum(obj);

cout<< “sum=”<<res<<endl;

}

Friend function possesses certain special characteristics:

� It is not in the scope of the class to which it has been declared as friend.

� Since it is not in the scope of the class, it cannot be called using the object of that

class. It can be invoked like a normal function without the help of any object.

� Unlike member functions, it cannot access the member names directly and has

to use an object name and dot membership operator with each member name.

� It can be declared either in the public or private part of a class without affecting

its meaning.

� Usually, it has the objects as arguments.

Friend Class:A class can also be declared to be the friend of some other class. When

we create a friendclass then all the member functions of the friend class also become

the friend of the other class. This requires the condition that the friend becoming class

must be first declared or defined (forward declaration).

#include <iostream.h> class sample_1

{ friend class sample_2;//declaring friend class int a,b;

public:

void getdata_1()

{ cout<<"Enter A & B values in class sample_1"; cin>>a>>b;

}

void display_1()

{

cout<<"A="<<a<<endl; cout<<"B="<<b<<endl;

 }

}; class sample_2

{ int c,d,sum; sample_1 obj1;

public: void getdata_2()

{ obj1.getdata_1();

cout<<"Enter C & D values in class sample_2";

cin>>c>>d;

} void sum_2()

{ sum=obj1.a+obj1.b+c+d;

}

 void display_2()

{ cout<<"A="<<obj1.a<<endl; cout<<"B="<<obj1.b<<endl; cout<<"C="<<c<<endl;

cout<<"D="<<d<<endl;

cout<<"SUM="<<sum<<endl;

} }; int main() { sample_1 s1; s1.getdata_1(); s1.display_1();

sample_2 s2; s2.getdata_2(); s2.sum_2(); s2.display_2();

}

Enter A & B values in class sample_1:1 2

A=1

B=2

Enter A & B values in class sample_1:1 2 3 4

Enter C & D values in class sample_2:A=1

B=2

C=3

D=4

SUM=10

Virtual Functions

A virtual function is a member function which is declared within a base class and is re-

defined(Overriden) by a derived class. When you refer to a derived class object using a

pointer or a reference to the base class, you can call a virtual function for that object and

execute the derived class’s version of the function.

• Virtual functions ensure that the correct function is called for an object, regardless of the

type of reference (or pointer) used for function call.

• They are mainly used to achieve Runtime polymorphism

• Functions are declared with a virtual keyword in base class.

• The resolving of function call is done at Run-time.

Rules for Virtual Functions

1. Virtual functions cannot be static and also cannot be a friend function of another class.

2. Virtual functions should be accessed using pointer or reference of base class type to

achieve run time polymorphism.

3. The prototype of virtual functions should be same in base as well as derived class.

4. They are always defined in base class and overridden in derived class. It is not

mandatory for derived class to override (or re-define the virtual function), in that case

base class version of function is used.

5. A class may have virtual destructor but it cannot have a virtual constructor.

concept of Virtual Functions

#include <iostream>

using namespace std;

class base {

public:

 virtual void print()

 {

 cout << "print base class" << endl;

 }

 void show()

 {

 cout << "show base class" << endl;

 }

};

class derived : public base {

public:

 void print()

 {

 cout << "print derived class" << endl;

 }

 void show()

 {

 cout << "show derived class" << endl;

 }

};

int main()

{

 base* bptr;

 derived d;

 bptr = &d;

 // virtual function, binded at runtime

 bptr->print();

 // Non-virtual function, binded at compile time

 bptr->show();

}

Output:

print derived class

show base class

Classes and Objects

 Class

A class in C++ is the building block, that leads to Object-Oriented programming. It is a

user-defined data type, which holds its own data members and member functions, which

can be accessed and used by creating an instance of that class.

• Data members are the data variables and member functions are the functions used to

manipulate these variables and together these data members and member functions

defines the properties and behavior of the objects in a Class.

Everything in C++ is associated with classes and objects, along with its attributes and

methods. For example: in real life, a car is an object. The car has attributes, such as

weight and color, and methods, such as drive and brake.

Attributes and methods are basically variables and functions that belongs to the class.

These are often referred to as "class members".

A class is a user-defined data type that we can use in our program, and it works as an

object constructor, or a "blueprint" for creating objects.

Example

Create a class called "MyClass":

class MyClass { // The class

 public: // Access specifier

 int myNum; // Attribute (int variable)

 string myString; // Attribute (string variable)

};

• The class keyword is used to create a class called MyClass.

• The public keyword is an access specifier, which specifies that members (attributes

and methods) of the class are accessible from outside the class. You will learn more

about access specifiers later.

• Inside the class, there is an integer variable myNum and a string variable myString.

When variables are declared within a class, they are called attributes.

• At last, end the class definition with a semicolon ;.

Objects

An Object is an instance of a Class. When a class is defined, no memory is allocated but

when it is instantiated (i.e. an object is created) memory is allocated.

Declaring Objects: When a class is defined, only the specification for the object is

defined; no memory or storage is allocated. To use the data and access functions defined

in the class, you need to create objects.

Syntax:

ClassName ObjectName;

Accessing data members and member functions: The data members and member

functions of class can be accessed using the dot(‘.’) operator with the object. For example

if the name of object is obj and you want to access the member function with the

name printName() then you will have to write obj.printName() .

Accessing Data Members

The public data members are also accessed in the same way given however the private

data members are not allowed to be accessed directly by the object. Accessing a data

member depends solely on the access control of that data member.

This access control is given by Access modifiers in C++. There are three access

modifiers : public, private and protected.

filter_none

edit

play_arrow

brightness_4

// C++ program to demonstrate

// accessing of data members

#include <bits/stdc++.h>

using namespace std;

class Geeks

{

 // Access specifier

 public:

 // Data Members

 string geekname;

 // Member Functions()

 void printname()

 {

 cout << "Geekname is: " << geekname;

 }

};

int main() {

 // Declare an object of class geeks

 Geeks obj1;

 // accessing data member

 obj1.geekname = "Abhi";

 // accessing member function

 obj1.printname();

 return 0;

}

Output:

Geekname is: Abhi

Member Functions

Member Functions in Classes

There are 2 ways to define a member function:

• Inside class definition

• Outside class definition

Member functions are the functions, which have their declaration inside the class

definition and works on the data members of the class. The definition of member

functions can be inside or outside the definition of class.

If the member function is defined inside the class definition it can be defined directly, but

if its defined outside the class, then we have to use the scope resolution :: operator

along with class name alng with function name.

If we define the function inside class then we don't not need to declare it first, we can

directly define the function.

class Cube

{

 public:

 int side;

 int getVolume()

 {

 return side*side*side; //returns volume of cube

 }

};

But if we plan to define the member function outside the class definition then we must

declare the function inside class definition and then define it outside.

class Cube

{

 public:

 int side;

 int getVolume();

}

// member function defined outside class definition

int Cube :: getVolume()

{

 return side*side*side;

}

The main function for both the function definition will be same. Inside main() we will

create object of class, and will call the member function using dot . operator.

Arrays with in a Class

C++ provides a data structure, the array, which stores a fixed-size sequential collection

of elements of the same type. An array is used to store a collection of data, but it is

often more useful to think of an array as a collection of variables of the same type.

Declaring Arrays

To declare an array in C++, the programmer specifies the type of the elements and the

number of elements required by an array as follows −

type arrayName [arraySize];

This is called a single-dimension array. The arraySize must be an integer constant

greater than zero and type can be any valid C++ data type

Initializing Arrays

You can initialize C++ array elements either one by one or using a single statement as

follows −

double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};

The number of values between braces { } can not be larger than the number of

elements that we declare for the array between square brackets []. Following is an

example to assign a single element of the array −

If you omit the size of the array, an array just big enough to hold the initialization is

created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};

You will create exactly the same array as you did in the previous example.

balance[4] = 50.0;

The above statement assigns element number 5th in the array a value of 50.0. Array

with 4th index will be 5th, i.e., last element because all arrays have 0 as the index of their

first element which is also called base index. Following is the pictorial representaion of

the same array we discussed above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index

of the element within square brackets after the name of the array. For example −

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to

salary variable

Multi-dimensional arrays

C++ supports multidimensional arrays. The simplest form of the multidimensional array

is the two-dimensional array.

Memory Allocation for Objects

Memory for objects is allocated when they are declared but not whenclass is defined. All

objects in a given class uses same member functions. The member functions are

created and placed in memory only once when they are defined in class definition

STATIC CLASS MEMBERS

 Static Data Members

 Static Member Functions

Static Data Members:

A data member of a class can be qualified as static. A static member variable has

certain special characteristics:

 

It is initialized to zero when the first object of its class is created. No other initialization is

permitted.Only one copy of that member is created for the entire class and is shared by

all the objects of that class, no matter how many objects are created.

� It is visible only within the class, but its lifetime is the entire program. 

Static data member is defined by keyword „static‟ 

Static Member Functions

Like static member variable, we can also have static member functions. A member

function that is declared static has the following properties:

A static function can have access to only other static members (functions or

variables) declared in the same class.

A static member function is to be called using the class name (instead of its

objects) as follows: class-name :: function-name;

Arrays of Objects

Arrays of variables of type "class" is known as "Array of objects". An array of objectsis

stored inside the memory in the same way as in an ordinary array.

Syntax:

class class_name

{

 private: data_type members;

public:

data_type members;

member functions;

};

Array of objects:

Class_name object_name[size]; Where size is the size of array

 Ex:

Myclass obj[10];

Objects as Function Arguments

Objects as Function Arguments: Objects can be used as arguments tofunctions This

can be done in three ways

a. Pass-by-value or call by value

b. Pass-by-address or call by address

c. Pass-by-reference or call by reference

a.Pass-by-value –A copy of object (actual object) is sent to function and assigned to

the object of calledfunction (formal object). Both actual and formal copies of objects are

stored at different memory locations. Hence, changes made in formal object are not

reflected to actual object. write a program to

swap values of two objects

b.Pass-by-address: Address of the object is sent as argument to function.

Here ampersand(&) is used as address operator and arrow (->) is used as de

referencing operator. If any change made to formal arguments then there is a change to

actual arguments

c.Pass-by-reference:A reference of object is sent as argument to function.

Reference to a variable provides alternate name for previously defined variable. If any

change made to reference variable then there is a change to original variable.

A reference variable can be declared as follows

 Datatype & reference variable =variable;

Friendly Functions

The private members cannot be accessed from outside the class. i.e.… a non member

function cannot have an access to the private data of a class. In C++ a non member

function can access private by making the function friendly to a class.

Definition:

A friend function is a function which is declared within a class and is defined

outside the class. It does not require any scope resolution operator for defining . It can

access private members of a class. It is declared by using keyword “friend”

Ex:

class sample

{ int x,y; public:

sample(int a,int b);

friend int sum(sample s);

};

sample::sample(int a,int b)

{

x=a;y=b; }

int sum(samples s)

{ int sum; sum=s.x+s.y; return 0;

}

void main()

{

Sample obj(2,3); int res=sum(obj);

cout<< “sum=”<<res<<endl;

}

Friend Class:A class can also be declared to be the friend of some other class. When

we create a friendclass then all the member functions of the friend class also become

the friend of the other class. This requires the condition that the friend becoming class

must be first declared or defined (forward declaration).

Returning Objects

Returning Object as argument

Syntax:

object = return object_name;

An object is used to access the class members. Like normal variable, object can be

pass as function argument.

const Member Functions

Like member functions and member function arguments, the objects of a class can also

be declared as const. an object declared as const cannot be modified and hence, can

invoke only const member functions as these functions ensure not to modify the object.

A const object can be created by prefixing the const keyword to the object declaration.

Any attempt to change the data member of const objects results in a compile-time error.

Syntax:

const Class_Name Object_name;

• When a function is declared as const, it can be called on any type of object, const object

as well as non-const objects.

• Whenever an object is declared as const, it needs to be initialized at the time of

declaration. however, the object initialization while declaring is possible only with the

help of constructors.

A function becomes const when the const keyword is used in the function’s declaration.

The idea of const functions is not to allow them to modify the object on which they are

called. It is recommended the practice to make as many functions const as possible so

that accidental changes to objects are avoided.

Following is a simple example of a const function.

#include<iostream>

using namespace std;

class Test {

 int value;

public:

 Test(int v = 0) {value = v;}

 // We get compiler error if we add a line like "value = 100;"

 // in this function.

 int getValue() const {return value;}

};

int main() {

 Test t(20);

 cout<<t.getValue();

 return 0;

}

Output:

20

Pointers to Members,

Pointer to Data Members of Class

We can use pointer to point to class's data members (Member variables).

Syntax for Declaration :

datatype class_name :: *pointer_name;

Syntax for Assignment:

pointer_name = &class_name :: datamember_name;

Constructors and Destructors.

Introduction to Constructors: C++ provides a special member function called the

constructor which enables an object to initialize itself when it is created.



 Definition:- A constructor is a special member function whose task is to initialize the

objects of its class. It is special because its name is the same name as the class name.

The constructor is invoked whenever an object of its associated class is created. It is

called constructor because it constructs the values of data members of the class.

 A constructor is declared and defined as follows:

integer obj1; => not only creates object obj1 but also initializes its data members m and

n to zero.

There is no need to write any statement to invoke the construct or function.

CHARACTERISTICS OF CONSTRUCTOR

� They should be declared in the public section. 

� They are invoked automatically when the objects are created.

� They do not have return type, not even void. 

� They cannot be inherited, though a derived class can call the base class constructor.

� Like other c++ functions, they can have default arguments.

�Constructors cannot be virtual. 

�We cannot refer to their addresses.

 

They make „implicit calls‟ to the operators new and delete when memory allocation is

required.

class integer

{

int m,n;

public:

integer();

………..

………..

} ;

integer :: integer()

{

m=0;

n=0;

}

int main()

{ integer obj1;

………..

………..

}

Constructors are of 3 types:

1. Default Constructor

2. Parameterized Constructor

3. Copy Constructor

1.Default Constructor: A constructor that accepts no parameters is called the default

constructor.

#include<iostream.h>

#include<conio.h> class item

{ int m,n; public: item()

{

m=10; n=20;

}

void put();

};

void item::put()

{

 cout<<m<<n;

}

void main()

{ item t;

t.put(); getch(); }

2.Parameterized Constructors:-The constructors that take parameters are

 called parameterized constructors. #include<iostream.h>

class item

{

int m,n; public:

 item(int x, int y)

 {

 m=x;

 n=y;

 }

 };

When a constructor has been parameterized, the object declaration statement such as

 item t; may not work. We must pass the initial values as arguments to the

constructor function when an object is declared. This can be done in 2 ways: item

t=item(10,20); //explicit call

item t(10,20); //implicit call

Eg:

#include<iostream.h> #include<conio.h>

class item

{

int m,n; public:

 item(int x,int y)

 { m=x; n=y;

 }

 void put();

};

void item::put()

{

 cout<<m<<n;

}

void main()

{

item t1(10,20);

item t2=item(20,30);

 t1.put(); t2.put(); getch();

}

3.Copy Constructor: A copy constructor is used to declare and initialize an object

fromanother object. Eg:

item t2(t1); or item t2=t1;

1. The process of initializing through a copy constructor is known as copy

initialization.

2. t2=t1 will not invoke copy constructor. t1 and t2 are objects, assigns the values of

t1 to t2.

3. A copy constructor takes a reference to an object of the same class as itself as

 an argument. #include<iostream.h>

class sample

 {

int n; public:

sample() { n=0; }

sample(int a)

{

n=a;

}

sample(sample &x)

{ n=x.n;

}

void display()

{ cout<<n;

}

}; void main()

{ sample A(100); sample B(A); sample C=A;

sample D;

D=A;

A.display();

B.display();

C.display();

D.display();

}

Output: 100 100 100 100

Multiple Constructors in a Class: Multiple constructors can be declared in a class.

There can be anynumber of constructors in a class.

class complex

{

float real,img; public:

 complex()//default constructor

 {

 real=img=0;

 }

 complex(float r)//single parameter parameterized constructor

 {

 real=img=r;

 }

 complex(float r,float i) //two parameter parameterized constructor

 {

 real=r;img=i;

 }

 complex(complex&c)//copy constructor

 {

 real=c.real; img=c.img;

 }

 complex sum(complex c)

{

complex t;

 t.real=real+c.real;

 t.img=img+c.img; return t;

 }

 void show()

 {

 If(img>0)

 cout<<real<<"+i"<<img<<endl;

 else

 {

 img=-img;

 cout<<real<<"-i"<<img<<endl;

 }

 }

};

void main()

{

complex c1(1,2); complex c2(2,2); compex c3; c3=c1.sum(c3); c3.show();

}

DESTRUCTORS: A destructor, is used to destroy the objects that have been created by

a constructor.

Like a constructor, the destructor is a member function whose name is the same

as the class name but is preceded by a tilde. Eg: ~item() { }

1. A destructor never takes any argument nor does it return any value.

2. It will be invoked implicitly by the compiler upon exit from the program to clean up

storage that is no longer accessible.

3. It is a good practice to declare destructors in a program since it releases memory

space for future use.

#include<iostream> using namespace std; class Marks

{

public:

int maths;

int science;

//constructor Marks() { cout << "Inside Constructor"<<endl;

 cout << "C++ Object created"<<endl;

}

//Destructor

~Marks() { cout << "Inside Destructor"<<endl; cout << "C++ Object

destructed"<<endl;

}

};

int main()

{

Marks m1; Marks m2; return 0; }

Output:

 Inside Constructor

 C++ Object created

 Inside Constructor

 C++ Object created

 Inside Destructor

 C++ Object destructed

 Inside Destructor

 C++ Object destructed

