UNIT - | : Visual Basic.

INTRODUCTION TO VISUAL BASIC

Visual basic is an ideal medium for developing Windows based application. It is
an event driven programming language.

Visual basic is considered as the fastest and easiest way to create applications
for Microsoft Windows. It provides with a complete set of tools to simplify rapid
application development.

The “Visual” part refers to the method used to create the Graphical user interface
(GUI). Instead of writing lines of codes to describe the appearance and location
of elements, we simply drag and drop pre-built objects into place on the screen.
The “Basic” part refers to the BASIC language, a language used by more
programmers than any other language in the history of computing. Visual Basic
has evolved from the original BASIC language and it contains several hundred

statements, functions, and keywords, which relate to the windows GUI.

FEATURES OF VISUAL BASIC

e Data access features allow creating database and front-end applications for

most popular database formats, including Microsoft SQL Server and other

enterprises-level databases.

e ActiveX technologies allow using the functionality provided by other applications,

such as Microsoft Word, Microsoft Excel spreadsheet, and other Windows
applications.

Internet capabilities makes it easy to provide access to documents and
applications across the Internet form within your application.(ActiveX

Documents).

e Your finished applications is a true .exe file that uses a run-time dynamic-link

library (DLL) that you can freely distribute.(Application Setup Wizard).

Edit with WPS Office

VISUAL BASIC EDITIONS

% The Visual Basic Learning Edition, allows the programmers to easily create
powerful applications for Microsoft Windows 95 and Windows NT(r). It includes
all intrinsic controls, grid, tab, and data-bound controls.

% The Professional edition provides computer professionals with a full-featured
set of tools for developing solutions for others. It includes all the features of
the Learning edition, plus additional ActiveX controls, including Internet
controls and the Crystal Report Writer. Documentation provided with the
Professional edition includes the Programmer's Guide, online Help, the
Component Tools Guide and the Crystal Reports for Visual Basic User's Manual.

% The Enterprise Edition allows professionals to create robust distributed
applications in a team setting. It includes all the features of the Professional
edition, plus the Automation manager, Component manager, Database
management tools, the Microsoft Visual SourceSafe™ project-oriented version

control system and more.

CONTROLS

Any applications must consist of a number of programs or procedures that perform
various activities. People behind Visual Basic decided to create special routines that
would perform a specific task. Words like routines, procedures, programs were
called as controls. For each purpose there have a separate control like to accept

data, to display pictures, and to draw lines.

PROPERTIES

The controls are given some attributes that are clearly defined. A control is
supposed to do only such and such activity. For example, a text box control can
accept multiline text or Word-wrap. All these attributes are called properties
therefore each control has certain properties.

EVENTS
There are number of things that can happen to a control. For example, a Command
2

Edit with WPS Office

button control can be clicked, as you click the start button in windows. These are all
some of the events that can take place on the application. Visual Basic allows
writing code to respond to such activities. Therefore we need to write code only for
those events. For example if your program has to respond when the user clicks a

command button, we need to write code only for click event.

METHODS

The action taken when the event occurs is the method. A method is a piece of code
that accomplishes a task. So in an event driven program, there are ‘Controls’, which
have ‘Properties’. When an ‘Event’ occurs to the ‘Control, some ‘Methods’ are

invoked. Unless an event occurs no method will be invoked.

PROGRAMMING LANGUAGE

The following steps are needed to build an application.

1. Design the User Interface

2. Write code to respond to User Input/Events.

DESIGNING THE USER INTERFACE
The User Interface is built using the controls and setting the properties for the
controls. For example the location of the Text Box, where the user will enter the

Customer Id, or the location where the current date is to be displayed etc.

WRITE CODE TO RESPOND TO USER INPUT/EVENTS

e The code invokes the methods associated with the controls. If the user clicks on
the control that displays the next record from the database, or the user selects a
particular option, or wants to ‘find’ the details of a client, etc. All such events have
to be acted upon.

e There are number of built-in keywords, associated with the controls that
accomplish the given task. Visual basic provides a Form, which is another control.
It also has properties, events occur on it and it has Methods associated with it.

e Visual Basic Integrated Development Environment also known as Visual Basic
3

Edit with WPS Office

IDE, has all the tools and fixtures to make the work easy. It has tool bars and

menu bars.

CREATING AN APPLICATION

Creating an application in Visual Basic is working with projects. A project is the

collection of files that is used to build an application. A project consists of

One project file that keeps track of all components (.vbp).
The .frm file. One file for each form(.frm). It contains the description of the
properties of the form and the controls on it.
One binary data file for each form containing data for properties of controls on the
form (.frx). These files are not editable and are automatically generated for any .frm
file that contains binary properties, such as picture or icon.
The (.cls) file for each class module. This file is optional. The class file is created
when the own objects are created.
The standard (.bas) file . This is also optional, one file for each standard module. It
contains module level declarations, procedures.
The ActiveX Control (.ocx) file , becomes a part of the project file only if optional
controls are added in the program.
The resource (.res) file, contains bitmaps, text strings that are used in the program.
We can have only one resource file.

The project file is simply a list of all the files and objects associated with the

project as well as information on the environment options. This information is updated

every time the project is saved. All these files and objects can be shared by other

projects as well. When all the files for a project is completed we can convert the project

into an executable file. We can also create other type of executable files such as .ocx,

.dll files etc.

Example:

Visual Basic 6.0 (VB6) can be invoked by two ways:
» Double clicking on the shortcut path

4

Edit with WPS Office

» Going through the pull-up menu from start.

VB6 will first show a screen with the name of the owner of this copy of the

software as shown below.

Mew Project 7|

Mew IE:-:istingI Hecentl

e ":0. s
H—]
% %’ 0‘0\
Il Activel EXE AckiveX DLL Ackiver VE Application
Control wizard
A G % % G
N T
T
VB wizard Data Project 115 Application Addin Ackivel
Manager Document Dl
P P 0 P LI
Cancel |
Help |

[Don't shaw this dialog in the future

Here a number of icons are displayed along with the type of projects that each

will start. The New Project Screen has three tabs:

e New
e Existing
e Recent

e New: It is the current tab used to open the new project file.

e Existing: It is used to display the existing projects on your screen.

e Recent: It is used to display the projects on which you have recently worked.
First choose the Standard.Exe Icon by clicking on it. Then the following screen

will be displayed.

Edit with WPS Office

‘#, Project] - Microsoft Yisual Basic [design]

Elle Edit ¥ew Project Format Debug Bun Query Diagram Tools Add-Ins Window Help

[#-5-Bledsadaloa], @ «|HERE2 30
ES|

General
(== . Project! - Form1 (Form] O] =] =]
-} Project1 (Project1)
-3 Forms

LB Farmi (Formi)

. coooo cosas Properties - Foim1
=] SRR [Form1 Form =l
o] P i Alphabetic | Categerized |
Bl Lo I I IR R Appeatance 1-30 ;I
I PR ——. -
BackCalor [&+E000000F
s [BorderStyle 2 - Sizable
MFWI
I~ lime— Arbrale Tria LI
Caption

Returnsfsets the text displayedin an
object's title bar or below an object's

| VB—M\crnsnf | i Accessories | @unlitlad—Paint II'&B,PIDiED“ s ‘ E@.‘ 356 PM

iaﬁlallm E @ H lgay

In all cases the types of files listed are the following
= .vbp: Visual basic Project File
= .vbg: Visual Basic Group File
*= .mak: Project files built with earlier versions of Visual Basic.

Right on top we see “Project1-Microsoft Visual Basic [design]. This is the title of
the working project. The title is displayed on the title bar and it tells that we are currently
working on Project1 and we are in ‘design’ stage or design mode. There are two other
modes. They are ‘run’ mode when the programs are running and ‘break’, while programs
are being debugged.

PROCEDURAL

Private Sub add_Click()
text3.Text = text1.Text + text2. Text

end Sub
IDE, FORMS AND CONTROLS
e The Integrated Development Environment (IDE) consists of the following

6

Edit with WPS Office

elements:
» Title bar
Menu bar
Toolbars
Form window
Toolbox
Project Explorer window
Properties window

Form Layout window

vV V VY V Vv VY VY

Code Editor window

[et 1 et |
P R e R e

AET

B e

VB ENVIRONMENT:

Title bar: The title is displayed on the title bar. [‘Project1-Microsoft Visual Basic

design]’].

The Menu bar has the following Menus:

File Menu : To open and save a new or existing project, to print and to make a
project file.

Edit Menu : For all editing requirement Cut, Paste, Find, Undo, etc.

View Menu : To view the various parts of the project, and the Visual Basic
environment.

Project Menu : Inserting or Removing forms, or objects to the project.

Format Menu : For spacing, placing and appearance of controls in the form.

Debug Menu : To remove the errors that have crept in.

7

Edit with WPS Office

Run Menu : To compile, start and stop a program.

Tools Menu : To add procedure and to customize the environment for the
project.

Add-Ins Menu : To add tools like Data Manager, other Wizards, etc.

Window Menu : Arranging appearance of various windows on the desktop.

Help Menu : For the on-line help that every programmer needs to refer to.

Ckrl4-m

B [t |) g P [e

A=) W)y i

Lipied it

e Toolbars: It provides quick access to commonly used commands in the

8

Edit with WPS Office

programming environment. By default the standard toolbar is displayed when you

start visual basic.

e The Tool Box: To the left of the Form1 window is the toolbox. It provides set of
tools for design time to place controls on a form. If the toolbox is not open,

display it by using the Toolbox command on the View menu.
E = 2
General I ---------
CEAR
1~ & =i EB
CER-I & =R
B ~ [B

Components...

L111w Dockable
—
Hide

e Form Window: The blank window in the upper-left corner of the center window,

which has a grid of dots. This is the form used to customize by adding controls.

e The Project Explorer: The Project Explorer is located on the right side . It
organizes the application as one project. All the code, and controls that are used
in the applications are stored in separate files. It is called a ‘Project Explorer’
because it has an interface like the Explorer and it deals with the working project.
The Project Explorer has three icons on its tool bar. Each icon represent a

function.
1. To view the code
2. To view the controls
3. To show or hide the forms

Icon to View code to view object to toggle folders

—
\

Edit with WPS Office

Project - Projectl

===

Eg Project1 {Project1)
E@ Forms
i 1 (Formi)

e Form Layout Window: This window allows you to position the forms in your

application.

e Form Lapout _|O] x|

e The Properties Window: This Window lists all the properties for an object or

control used in Visual Basic. Currently the only object is the Form1. This is the
big blank window that is sitting in the middle of the screen. The caption in the
properties window reads ‘Form1’.And that is the name on the title bar of the
Form1 window. We can change the caption, the height, the width, etc. Each
object has a number of properties that can be changed as the need dictates.
e Code Editor Window:
= |t serves as an editor for entering application code.
= A separate code editor window is created for each form or code module in
the application.

= The programmer can change the font size of the code.

IFurm j ILnad j
Private Zub Form Load() z
End 3Sub
== Ny
SAVING THE PROJECT:

Go to file menu and choose the Save project option.

Then the name of the Form file will be asked. This is the name of the file and is

10

Edit with WPS Office

different from Form caption. Then the project name will be asked and the user will

give it.

Note:
While saving the project on each time, Visual basic updates the project

file(.vbp).A project file contains the same list of files that appears in the Project Explorer

window.
Gave File As K |
Savejn:l‘aﬁ j ﬁl
3 Template
" Taql
| 'wizards

File name; IF::urm‘I Save

Save as pe: IFDrm Filess [* frm] j Cancel

Pl

Help

There are Four options available with regard to opening an saving projects. They are
= New Project
= Open Project
= Save Project
= Save Project As
New Project:
= Closes the current project, prompting you to save any files that have changed.
= We can select a type of project from the New Project dialog.

= Visual Basic creates a new project with a single new file.

Open Project:
Closes the current project, prompting you to save any changes. Visual Basic the
11

Edit with WPS Office

opens an existing project, including the forms, modules, and ActiveX controls listed in
its project (.vbp) file.
Save Project:

Updates the project file of the current project and all of its form, standards, and

class modules.

Save Project As:

Updates the project file of the current project, saving the project file under a file
name that is to be specified.
Restart VB:

In the New Project Screen, press the recent tab. The project will be listed on the
top.

Types of Project:

Following are the options available with Visual Basic:
Standard:

This project type must be chosen for the small or large standalone application is
developed.
ActiveX EXE:

This option is chosen for the creation of an executable component. An ActiveX
executable component can be executed from other application. This will be a program
that can provide functionality to a number of other applications.

ActiveX Control:

This helps to create a custom ActiveX control that can be used in other
application.
ActiveX DLL:

Like the ActiveX EXE it provides added functionality to the application, but will
work ‘in-process’ with an application.
Data Project:

Choose this option to create a project with the database components.
lIS:

12

Edit with WPS Office

This helps to create an Internet application.
ActiveX Document:

Creates a component that can take over the application at runtime. It creates an
Internet application that can be executed from a browser.
DHTML Application:

Creates an application that can be executed from a web browser only.

TOOL BOX;
A toolbox contains number of controls. These controls are used to create a

simple application. It contains 21 controls. They are

Text Box Picture Box Label Box Option Button
Frame Control List Box Combo Box Data Control
H Scroll Bar V Scroll Bar Command Button Check Box

Drive List Box. Dir Control File List Box Line Control

Shape Control Image Control OLE Timer

Control & Pointer

Text Box [ab]
Text box control is a versatile control. It can be used for getting the input from

the user and also display the result. It is called as Edit field or Edit control.

Picture Box
It can display a graphic from a bitmap, icon or metafile as well as enhanced
metafile, JPEG or GIF files.

Label Box A
It allows you to display text that you don't want the user to change, such as
caption under a graphics.

Option Button ke

It allows you to display the multiple choices from which the user can choose only

one option.
13

Edit with WPS Office

Frame Control i
The frame control allows you to create graphical or functional grouping controls.

To group controls, draw the frame first and then draw controls inside the frame.

List Box

List box displays a list of items. It can occupy some space on the form.

Combo Box
Combo box is also used to display the items. But it can display a single item at a

time. It can occupy a less space on the screen.

Data Control %

Data control provides access to database through controls on your form.
H Scroll Bar (Horizontal Scroll Bar) (4

Provides a graphical tool for quickly navigating through a long list of items or a
large amount of information for indicating the current position on a scale, or as an input

device or indicator of speed or quantity.

A
V Scroll Bar (Vertical Scroll Bar) /=

Provides a graphical tool for quickly navigating through a long list of items or a
large amount of information for indicating the current position on a scale, or as an input

device or indicator of speed or quantity.

The Pointer: k

The first item on the toolbox is not a control but is used to manipulate controls
after you create them. Click the pointer when you want to select, resize, or move an
existing control. The Pointer is automatically activated after you place a control on a
form.

Command Button =4
Creates a button that the user can choose to carry out a command. The user will

click on this button and the computer will perform the task associated with the button.

Check Box
It allows you to display the multiple choices from which the user can choose any

14

Edit with WPS Office

number of items.

Drive List Box, Directory List Box & File List Box &]
These controls are used to display available Drives, Directories and Files. The
user can select a valid Drive on his system. The user can see a hierarchical structure of

directories and files.

Line control and Shape control == B

These controls are used to draw lines, square, circles, rectangles and etc.

Image control sl
It is very similar to the picture box control. Stretch property is available in Image

control. So we can easily resize the images.

OLE (Object Linking & Embedding)
This control allows you to link your program to another object or program like as
Ms Word, Internet Explorer, and Ms Word etc.

Timer control

It is a very important control. It is used for time-related processing. It is mainly
used in the auto save option.

PROPERTIES WINDOW:

e It is located above the Form Layout window on the right-hand side of the VB

environment. If the properties window is hidden

make it visible by pressing F4, or choose .

- 1]
View—>|Properties. B
e The title bar of the properties window indicates e -
ADDE AN 1 - 30
the properties of control. The line below the title == G S owmme

bar indicates what object the user working with.

e |t consists of two columns. The first column

indicates the properties.

Font Transparert True

. . . - ForeColor B ers00000128
e The second column indicates the current setting - ;:;-,'
c t"'kb ontext D l
of the property. It is also called as settings box. Ll foreesroke
- Left]
15 prmbion (e

MOIChid Fake
MinButton True

Moveable True
hegotoreidens True
N OLECvopMode 0 - None -
Edit with WPS Office Caption
¥ Retunsfoets the text deplayed n an object's tide bar o
» belows an object’s icon.

e The right-hand column is working like an ordinary text box, the method for
changing the setting for a property by :

» Move the mouse until the mouse pointer is in the right column of the
correct line in the properties window.

» Click at the location where the text to be inserted.

» Enter the text.

e The properties window consists of two Tabs. The first default Tab is
alphabetical. The properties to be listed by functionality by using the second Tab
categorized at the top of the properties window.

Moving Through the Properties Window:

e To quickly move through the properties in the properties window use
Shift+CTRL+letter key. This moves to the first property that begins with that letter.
Subsequent uses of this combination move to succeeding properties that begin
with that letter. (OR) Use the arrow keys or the mouse to scroll through the
properties window.

Example:

e Whenever a property has a fixed number of options the arrow in the line of the
properties window indicates that a drop-down list box is available.

e The Max Button property consists of two values. The default value is True. To
change this property to False by using three ways:

1. Once you have highlighted this line in the properties window, the simplest way to
do this is just to press F. the Max Button property changes from True to False.

2. Double-click in the right-hand column.

3. To click the arrow immediately to the right of the settings box where True
appears. To select the False option by pressing DOWN ARROW and then pressing
ENTER, or by clicking the word False.

Working with the Properties Window:
e Display the properties window by pressing F4 if it is not visible.
e Move to the properties window and select an item from the properties in the list

box.

16

Edit with WPS Office

e Enter the new setting for the property.
e Press ENTER to accept new string.
e Keyboard Shortcuts:

Key board shortcuts for manipulating the properties window

Key Action
SHIFT+CTRL+Letterkey = Moves to the first item beginning with that letter
Down arrow Moves to the next item in the properties window
UP Arrow Moves to the previous item in the properties list box
Page Down / END Moves to the last item displayed in the properties list

box or to the last item
Page UP / HOME Moves to the first item displayed in the properties list box or
to the first item

F4 Brings up the properties window

COMMON FORM PROPERTIES:

e The Form consists of many properties. Some of the commonly used properties are:

o Caption: This property sets the title of the form. It can be changed at runtime. It
must be meaningful and informative to the user.

e Name: It is used only in code. It gives the name by which the Form is referred to in
your code. The name of a form cannot be changed at runtime.

e Appearance: This property determines whether the form will have a three-
dimensional look. The default value of 1 indicates the form will appear three-
dimensional. If it changes to 0, the form will appear flat.

e Border Style: This property determines the type of window that the user will view at
runtime. It consists of five values. The default value, 2-Sizable, allows the user to
size and shape the form via the hot spots located on the boundary of the form.

The other values are:

1. 1-Fixed Single

2. 3-Fixed Double

3. 4-Fixed Tool Window

17

Edit with WPS Office

4. 5-Sizable Tool Window

5. 0-None
Set the Border style value to 0-None, the application does not consists of no
border. The form created without a border cannot be moved, resized, or reshaped.
The value 1-FixedSingle, the user no longer be able to resize the window. The
users minimize and maximize the form window.
The third setting 3-FixedDouble not used for ordinary forms, but it is commonly
used for dialog boxes. It gives a nonsizable (it has no hot spots).
The 4-Fixed Tool Window setting not used very often. Under windows 95/98, this
displays the form with a close button. The fifth setting 5-Sizable ToolWindow like
a FixedToolWindow setting.
ControlBox: The value of this property is True or False. If it is set to True, the
Control Box is visible on the top left-hand corner of the form. The minimize and
maximize button are displayed on the title bar of the Form.
The value of this property is set to False the user not access the minimize and
maximize commands.
Enabled: This property consists of two values. The default value is True. If it is
set to False, the form cannot respond to any events such as the user clicking on
the form.
Font: To access the Font property press Ctrl+Shift+F. It includes the following:
1. Font Name: Name of the font.
2. Font Bold: If set to true, the text will be displayed in bold.
3. Font Size: Set the size of the text in points.
Height, Width: This property indicates the height and width of the form. The user
can change their values directly via the properties window.
To perform this users enter the value in the appropriate line in the right-hand
column of the properties window.
Icon: This property determines the icon your application will display when it is
minimized on the toolbar. To choose an icon for user applications go to

properties window and select the Icon property.

18

Edit with WPS Office

e Click the box containing three dots a dialog box will appear.

e From this dialog box we can choose the icon for the application Left, Top:

e These properties determine the distance between the left or top of the form and
the screen. To control these properties by using the Form Layout window.

e MousePointer, Mouselcon: The MousePointer is a useful property it set the
shape of the mouse pointer. The default value is 0, but as the pull-down list
indicates, there are 17 other values. Set the MosuePointer property to a value of
99, the user able to use a custom icon.

e StartUpPosition: It is another way to decide on the initial position of the form at
run time. It is more precise than using the Form Layout window.

e Visible: This property consists of two values. The default value is True. Set the
value of this property to False, the form will no longer be visible.

e WindowsState: This property determines how the form will look at run time. There
are three possible settings. A setting of 1 reduces the form to an icon, and a

setting of 2 maximizes the form. A setting of 0 is the normal default setting.

SCALE PROPERTIES:
e The scale properties are need to position objects or text in a form accurately.
The following properties that affect the scale used in a form:
1. ScaleMode
2. ScaleHeight, ScaleWidth
3. Scaleleft, ScaleTop
ScaleMode:
e It allows you to change the units used in the forms internal coordinate system. It
consists of seven possibilities. The default value is 1.
ScaleHeight, ScaleWidth:
e Use this property when you set up your own scale for the height and width of the
form.
ScaleLeft, ScaleTop:

e These properties describe what value visual basic uses for the left or top corner

19

Edit with WPS Office

of the form. The original (default) value for each of these properties is 0.
These properties are most useful when you are working with graphics like
ScaleHeight and ScaleWidth.

COLOR PROPERTIES:

:
Using Color properties specify the Succer :-“'m] -
background color (BackColor) and o rranzparen o T

the foreground color (Forecolor) for IEE.:');E:, ;

text and graphics in the form. *“;;P':Dd:w E

The BackColor and ForeColor Properties via the Color Palette:

To set the Backcolor property, open the properties window and select BackColor
(represented by hexadecimal code-base 16). To set colors is to choose one of
the color properties and click the down arrow in the Settings box. This opens up
a tabbed dialog box with two tabs.

The System tab on this dialog box gives the colors currently used by windows
for its various elements. To click on the Palette tab, the color grid will appear.
Select any color from the Palette and the Color code for that color is placed in
the settings box. The background color of the form will automatically show the

user changes to the BackGround property.

Working with the Color Palette:

To create the own colors by working with the color palette directly. Open the
color palette by view menu choosing the color palette. (ALT+V, L).

To the left of the palette, a dark box enclosed in a lighter box. The inner box
displays the current foreground color, and the outer box displays the current
background color.

To change the foreground color by clicking the inner box and the clicking any of
the colored boxes displayed.

To change the background color, click the outer box and then click any of the

colored boxes displayed.

20

Edit with WPS Office

e To go back to the default colors specified in the Windows control panel, click
the Default command button at the right.
e To create own colors for the color palette consists of the following steps:
1. Click one of these blank boxes, and then click the Define Colors
command button. This opens the Define Color dialog box.
2. Change the amount of color to suit the user needs by adjusting the
controls in the dialog box.
3. Press the Add Color button to create the custom color or the Close

button to cancel.

OBJECT ORIENTED AND EVENT DRIVEN

e Move to the event drop-down list box on the right and click the down arrow.
e Move through the box until the user get to the click item.

e Select Form_Click event and click on it.

Then Visual Basic does the following:
e Gives the user a new event procedure template for the Form-Click event
procedure
e Adds a dotted line between the Form_Load event and the click event.
e Moves the cursor to the blank line before the End Sub line in the click event
procedure.
Output

When the user run the form and click once above the form it will show the following

21

Edit with WPS Office

output

. Project] - Fom (Fom) = [0 %]
u

Design form

Code window

FORM EVENTS:

1. Click Event: To respond to a click
2. DBI Click: To respond to a Double click
3. Resize: To respond when the user resizes the form.

4, Initialize Event:

As the name suggests, all the variables associated with this form are initialized.
5. Activate Event:

This event occurs when the form gets user input. This event also occurs when

the show method or set focus method of the form is called.

6. Load Event:

During the load event, the form with all its properties and variables is loaded in
memory. The load event occurs whenever the "Show" method is executed or a form
property is referenced.

7. Deactivate Event:

This event occurs when an another form gets the focus.
8. Unload Event:

When the user closes the form, the form is closed from the memory. Another
event called the Query Unloaded event occurs before the unload event fired. The query

unload event allows the option to abort the unload event.

22

Edit with WPS Office

9. Terminate Event:

All the memory that was held for the form variable is released.

Example Program for Form Events:

1. Open the new project window.

2. Add Form2 to the new project through Project—> Add Form

3. Add command button control to form1.

4. Type the following code to the Form1.

Private Sub Command1_Click()
Form2.Show

End Sub

Private Sub Form_Activate()
MsgBox "Form Activated”

End Sub

Private Sub Form_Deactivate()

Private Sub Form_Load()
MsgBox "Form Loaded"
End Sub
Private Sub Form_Terminate()
MsgBox "Form Terminated"
End Sub
Private Sub Form_Unload(Cancel As

Print Form —A Single command used for getting an image of the form, including

whatever is currently displayed on the form to the printer.

The Print Form method tries to send to the printer connected a dot-for-dot image

of the entire form.

e Example:
Form1.Cls
Form1.print “WELCOME College”

STAND-ALONE WINDOWS

CREATING 21|
PROGRAMS: Saven: |) VB98 = = ® ek E-
:) Template %VBS
¢ One of the most exciting features of [, &=
2
Visual Basic is the ability to change [Hor
your projects into stand-alone
. . File name: ok I
Microsoft windows programs. =
e To make a stand-alone VB application, _ o |
23 Optiong... |

Edit with WPS Office

simply go to the File menu and choose the Make Project EXE File option (ALT+F,
K). This opens a dialog box like as follows:

e The default name for the .exe version of your file is the project name.

e For the stand-alone program, the Windows desktop uses the same icon that

Visual Basic uses for the executable version of the Project.

EXIT FROM VB APPLICATION:
e The three ways are available to run a Visual Basic application:
1. Select the Start option from the toolbar by clicking the forward arrow.
2. Select the Start option from Run menu by using the mouse or by pressing ALT+R,
S.
3. Press F5.
e To return to developing an application click on the exit(x) button on the form, or open

the Run menu and click the End option, or use the End tool.

WRITING FIRST PROJECT:
There are two methods of creating the Control on the Form;
First Method:

= To put a control on the Form, Click with the left mouse button on the control.

Next move the mouse pointer to the location on the Toolbar where you want the
control on the Form.

= Notice that the pointer has changed to a crosshair.

= Hold down the left mouse button and drag in any direction.

* Release the left mouse button.

= Then the control is appeared on the Form.
Second Method:

= Double click the desired control on the ToolBox.

= That the control will appear at the center.

= Now we can drag the control and place it at any location.

CONTROLS IN VB

24

Edit with WPS Office

Working with Control:

In the properties of the control, we can change resize the control .

All the windows application have a uniform size for their button.

Select a control by simply moving the mouse pointer inside the control and
clicking the left mouse button, the sizing handles will appear.

The four handles on four corners are to increase or decrease the length and
breadth of the control.

The two sizing handles on the horizontal edges are used to increase or decrease
the height of the control.

The two sizing handles on the vertical edges are used to increase or decrease
the width of the control.

To move a control to another location, click on the control, hold down the left

mouse button and drag the control to the desired location.

More work on a control:

Click the right mouse button on the control, a pop up menu will be displayed. It

will help to control, view the code written for it, and view its properties, also remove

the button from the form, make a copy of it.

This menu has another option that is useful when number of controls is used and

when they are overlapped. if the currently visible control is hiding another control,

this option will get enabled. The options used are Bring to Front and Send to Back.

Select the control and click on Format on the menu bar. The menu will be

displayed as follows

| Farmat Debug Run Qu
Align »
Make Same Size

1F siee bo Grid

Horizonkal Spacing »
Yertical Spacing »

Cenker in Form L4

Order »

B Lock Controls

Edit with WPS Office

The Lock controls option is used stop the movement of the control from one

place to another until you unlock the control.

CODE CONTROL IN WINDOW:

There are several options are used to open the code window.
i) Select the control, press the right mouse button, pop-up menu will appear,
choose the view code option.
(Or)
Press F7, after selecting the control.
(Or)
Click on View in the Menu bar, and then click the View Code option.
(Or)
Use the View Code icon on the Project Explorer window.
(Or)

Directly double click the control.

Anatomy of the Code Window:

The title bar of the code window contains the name of the Project and Form
name. Next there are two combo boxes. One holds the text “Form” and the other holds
the text “Load”.

rm Project] - Form1 [Code)
IForm :| |Load

Private Sub Form Load()

End Sub

rr

Cdde Window Event procedure

Edit with WPS Office

This means that form is the name of the object and load is the event that you

want to

write the code for. Click the down arrow button and the Drop Down list box will display
all the controls that have been placed in the form.

If you intend to write the Command1, then select it from the list by clicking on it.
Now click on the Down arrow button on the other Drop down control. This will list all the
events related to the selected object. The lines given below provide a framework within
which you can enter the code.

Private Sub Command1_Click ()

End Sub
The Private means that the variables declared and the code used here can be
used only by this function. Then we have the word Sub. This is short for Sub-routine or
Function. Command1_Click() is the name of the function which is self explanatory. End

Sub means end of this subroutine.

THE NAME (CONTROL NAME) PROPERTY:

e This property determines the name by which it is referred to in the program.
This property is more important the user avoid this name use Me keyword in
your code because VB knows the form that the code is attached to.

Example: Height = 5000 or Me.Height = 5000

e To change the height of a command button whose Name property is

MyCommandButton, represented as
MyCommandButton.Height=500
e To Double-Click the MyCommandButton the event procedure will look as

follows:
27

Edit with WPS Office

Private Sub MyCommandButton_Click()
End Sub

e The limits on a control name are the same as for form names:

e The name must begin with a letter.

e Use any combination of letters, digits, and underscores.

e It cannot be longer than 40 characters.

PROPERTIES OF COMMAND BUTTONS:

—1 command Button properties

Property Description

Name The name of the object so you can call it at runtime
This specifies the command button's background color. Click the

BackColor BackColor's palette down arrow to see a list of common Windows control
colours, you must change this to the style property from 0 - standard to 1
- graphical

Cancel Determines whether the command button gets a Click event if the user
presses escape

Caption Holds the text that appears on the command button.

Default Determins if the command button responds to an enter keypress even if]
another control has the focus
Determines whether the command button is active. Often, you'll change

Enable the enable property at runtime with code to prevent the user pressing the
button

Font Produces a Font dialog box in which you can set the caption's font name,
style and size.

Height Positions the height of the object - can be used for down

Left Positions the left control - can be used for right

28

Edit with WPS Office

MousePointer

If selected to an icon can change the picture of the mouse pointer over
that object

Hold's the name of an icon graphic image so that it appears as a picture

Picture instead of a Button for this option to work the graphical tag must be set
to 1
Style This determines if the Command Button appears as a standard windows
dialog box or a graphical image
Tab index Specifies the order of the command button in tab order
Whether the object can be tabbed to (this can be used in labels which
Tab Stop
have no other function)
If the mouse is held over the object a brief description can be displayed
Tool Tip Text |(for example hold your mouse over one of the above pictures to see this
happening
Visible If you want the user to see the button/label select true other wise just
press false
Width Show the width of the object

SIMPLE EVENT PROCEDURES FOR COMMAND BUTTONS:
Double click a control or press F7 to go to code window after that select the

required event for the command button and write the procedure for it. For example the

command button shown below has the name property as CmdClickMe and the code
written for it is (print “WELCOME College”) and the event is Click.

OTHER EVENTS FOR COMMAND BUTTONS:

Events

GotFocus

Occurs

when the CommandButton gets focus either from the Tab key, when it is

clicked on by the user or by using the SetFocus method.

29

Edit with WPS Office

KeyDown, KeyUp
KeyCode As Integer, Shift As Integer
When the user presses a keyboard key down or releases a key, these events occur.
Private Sub Command1_KeyDown(KeyCode As Integer, Shift As Integer)
If KeyCode = vbKeyBack Then
MsgBox "You pressed the backspace key!"
End If
End Sub
The Shift argument contains the value of the Shift, Control and Alt keys. This is
useful for performing a different action when one of these keys is pressed in

combination with another e.g. pressing 'A' would be different to pressing 'Ctrl+A'".

Constant [Value Description
vbShiftMask|1 Shift key
vbCtrIMask (2 Ctrl key
vbAltMask (4 Alt key

If a combination of these keys are pressed, the Shift argument will contain the sum of
all keys pressed e.g. Ctrl+Alt would be 6.
Private Sub Command1_KeyDown(KeyCode As Integer, Shift As Integer)
If Shift = vbCtrIMask + vbShiftMask Then
If KeyCode = vbKeyA Then
MsgBox "You pressed the Ctrl+Shift+A key combination!"
EndIf
End If
End Sub
KeyPress
KeyAscii As Integer
This event works differently to the KeyDown and KeyUp events in that it detects the
actual character (as the ANSI keycode) that is pressed rather than the keyboard key.
E.g.

Key

Pressed Result

S 115
30

Edit with WPS Office

Shift Nothing
Space 32
You can use the Chr function to convert the code into a letter e.g. Chr(KeyAscii). If

KeyAscii is set to 0 in this event, this makes the program act as if the key was never
pressed.

LostFocus
Occurs when the CommandButton loses focus.

MouseDown, MouseUp
Button As Integer, Shift As Integer, X As Single, Y As Single
This event occurs whena mouse button is pressed down or released over a
CommandButton.

Private Sub Command1_MouseUp(Button As Integer, Shift As Integer, X

As Single, Y As Single)

If Button = vbMiddleButton Then

MsgBox "The middle button was pressed on the CommandButton"
End If
End Sub

The Button argument returns one of the following possible values:

Constant Value Description

vbLeftButton 1 Left mouse button

vbRightButton 2 Right mouse button

vbMiddleButton |4 E’“ddle mouse
utton

The Shift argument works the in same the same way as in the KeyDown and
KeyUp events. The X and Y arguments return the position of the cursor in relation to the
CommandButton i.e. the coordinates of the very top-left of the CommandButton are 0, 0.

The MouseDown event occurs before the Click event and the MouseUp event
occurs after the Click event.

31

Edit with WPS Office

THE IMAGE & PICTURE BOX CONTROL:
The PictureBox Control:

PictureBox controls are among the most
powerful and complex items in the Visual Basic
Toolbox window.

These controls are more similar to forms than to other
controls.

PictureBox controls support all the properties
related to graphic output, including AutoRedraw,
ClipControls, HasDC, FontTransparent, CurrentX,
CurrentY, and all the Drawxxxx, Fillxxxx, and Scalexxxx
properties. PictureBox controls also support all graphic
methods, such as Cls, PSet, Point, Line, and Circle and
conversion methods, such as ScaleX, ScaleY,
TextWidth, and TextHeight.

The Image Control:
Image controls hold pictures.

They can also be used for creating toolboxes

Properties -

[Imagel Image
Alphabetic ICahegorized

Lt e

(MName) Imagel
Appearance 1-30
Borderstyle 0 - None
DataField

DataFormat

DataMember

DataSource

Draglcon (MNaone)
OragMade 0 - Maniual
Enabled True
Height 2040
Index

Left 1320
Mouselcon (Mone)
MousePointer 0 - Default
OLECragMode 0 - Manual
OLEDropMode O - None
pictwre (S
Stretch True

Tag

ToolTipText

Top 480
Visible True
‘WhatsThisHelpID 0

‘Width 2160

Image controls can be used to display icons or pictures created with the program such

as Microsoft paintbrush. They can also hold windows

=T

metafiles, JREGs or Gif files.

Image controls are far less complex than Picture
Box controls. They don't support graphical methods or
the AutoRedraw and the Clip Controls properties, and

they can't work as containers, just to hint at their

biggest limitations. Nevertheless, you should always

strive to use Image controls instead of Picture Box controls because they load faster

and consume less memory and system resources. Remember that Image controls are

windowless objects that are actually managed by Visual Basic without creating a

Windows object. Image controls can load bitmaps and JPEG and GIF images.

32

Edit with WPS Office

It is used to display a graphic. An Image control can display a graphic from a

bitmap, Icon, or metafile, as well as enhanced metafile, JPEG, or GIF files.

Property Description Data Value

Left, Top This property determines
the distance between the
Image Control and the
left edge and top of the
container (form),
respectively.

BorderStyle Returns/sets the border e No border (setting
style of the object =0)

e (Default) Fixed
Single border
(Setting=1)

Stretch Returns or sets a value e True-The graphic
indicating whether a resizes to fit the
graphic resizes to fit the control.
size of an Image control e False-(Default) The

control resizes to fit
the graphic.

Picture Returns or sets a graphic Picture(Bitmap, metafile,
to be displayed in a Icon etc)
control.

TEXTBOXES:

e The text boxes are the primary method for accepting input and displaying output

in Visual Basic.

Standard Properties of Text Boxes:

e It consists of 50 properties. The standard properties are:

» Name

» Font
» Enabled
» Visible
>

ForeColor and BackColor

33

Edit with WPS Office

Name: This property indicates the name of the text box is used only for the
code. (The Microsoft’s Prefix for the Name property of a text box is txt).

Font: To set the font properties via the Font dialog box available from the
Properties window, but the user can only use one font per text box.

Enabled: This property affects whether the textbox will respond to events. If the
text box is displayed, the user cannot enter text inside it. It also grayed. It
consists of two settings. The default value is True.

Visible: This property consists of two values. The default value is True. If it is
change to False the text box will disappear.

ForeColor and BackColor: It ForeColor affects the color of the text that is
displayed. The BackColor affects the rest of the text box. Both of these can be
set independently of the surrounding container. It is easiest to set them using the

color palette from the Properties window.

Some Special Properties for Text Boxes:

Text: The default value for this property is set to Text1, Text2 and so on. If you
want a Text box to be empty when the application starts, select the Text property
and blank out the original setting.

Alignment: This property controls how text is displayed. The default value is O,
which indicates the text is left-aligned. Use a value of 1 and text is right-
aligned. Use a value of 2 and text is centered.

MultiLine: This property determines whether a text box can accept more than
one line of text when the user runs the application, and it is usually combined
with resetting the value of the Scrollbars property.

VB automatically word-wraps when a user types more than one line of
information into a multiline text box. The multiline text boxes are the usual
method for displaying large amounts of text in Visual Basic. The limit for a
multiline text box is approximately 32,000 characters.

ScrollBars: This property determines whether a text box has horizontal or vertical

scrollbars. Without scrollbars, it becomes much harder for the user to move

34

Edit with WPS Office

through the data contained in the text box, thus making editing the information
that much more difficult.

e The four possible settings for the ScrollBars property are:

The default value is 0.

0-> The text box lacks both vertical and horizontal scrollbars.
1->The text box has horizontal scrollbars only.

2->The text box has vertical scrollbars only.

3->The text box has both horizontal and vertical scroll bars.

o BorderStyle: There are only two possible settings for the BorderStyle property for
a text box. The default value is 1, which gives the single-width border, called a
fixed single. If you change the value of this property to 0, the border disappears.

e MaxLength: This property determines the maximum number of characters the
text box will accept. The default value is 0. Any setting other than 0 will limit the
user’s ability to enter data into that text box to that number of characters.

e PasswordChar: The asterisk (*) symbol used as a password character. This
feature is combined with the MaxLength property to add a password feature to
your programs.Locked:

e This True/False property prevents users from changing the contents of the text

box. Users can scroll highlight text, but won't be able to change it.

Event Procedures for Text Boxes:
e The text boxes can recognize 23 events. VB monitors the text box and calls the
Change event procedure whenever a user makes any changes in the text box.
One of the most common uses of the Change event procedure is to warn people

that they should not be entering data in specific text box at this moment.

LABELS:
It is used to display information about the controls present near by. It is used to

identify a textbox or other control by describing its content.

35

Edit with WPS Office

Properties for Labels
1. Caption Property:
To display text on a label control, set its Caption property.
2. BackColor Property
Sets the back color of the label
3. ForeColor Property
Sets the fore color (color of the text that is displayed) of the label
4. Visible Property
Makes the labels appear and disappear by setting the value true or false.
5. Alignment
Return/sets the alignment of a control’s text. By setting the values as
o 0-(default) left-aligned
e 1-right-aligned
e 2-center
6. BorderStyle
Returns/sets the border style of the object. By setting the values as
e No border (setting =0)
o (Default) Fixed Single border (setting =1)
7. BackStyle

Determines whether the label is transparent or opaque.

8. Autosize
Determines whether a control is automatically resized to display its entire contents. By
setting the values as

e True- resized according to the contents

o False (default)-does not resizes.
9. WordWrap
Returns/sets a value that determines whether a control expands to fit the text in its
caption. By setting the values as

e True- wraps the contents

36

Edit with WPS Office

e False (default)-does not wraps the contents.
10. Usemnemonic
Returns/sets a value that specifies whether an ampersand (&) included in the text of the
caption property of the label control defines an access key. By setting the values as
e True-(Default) Any ampersand appearing in the text of the caption property
causes the character following the ampersand to become an access key. The
ampersand itself is not displayed in the interface of the label control
e False-Any ampersand appearing in the text of the caption property is displayed
as an ampersand in the interface of the Label control.
Some Event Procedures for Labels:
Click event- it occurs on clicking the label.
Change event- it occurs when the contents of a control have changed.
DblClick event- it occurs on double clicking the label.
MouseDown-it occurs when the user presses the mouse button.
MouseUp events-it occurs when the user releases the mouse button.
MouseMove event-it occurs when the mouse is moved towards the label.

MESSAGE BOXES:

e The message boxes display information in a dialog box superimposed on the form.
They wait for the user to choose a button before returning to the application.

e The users cannot switch to another form in your application as long as VB is
displaying a message box.

e It should be used for short messages or to give transient feedback. It can hold a
maximum of 1,024 characters, and VB automatically breaks the lines at the right
side of the dialog box.

e Syntax for message box

MsgBox MessagelnBox, TypeOfBox,TitleOfBox

e Example:
The application display a message box when the user moves the focus away from a

text box before placing information inside it.

37

Edit with WPS Office

Private Sub Text1_LostFocus()

MsgBox “Enter the Value”

End Sub

e The three different groups of built-in integer constants to specify the kind of

message box.

Symbolic Constant Value Meaning
vbOKOnly 0 Display OK Button Only
vbOkCancel 1 Display OK and Cancel buttons
vbAbortRetrylgnore 2 Display Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Display Yes, No, and Cancel buttons
vbYesNo 4 Display Yes and No buttons
vbRetryCancel 5 Display Retry and Cancel buttons
vbCritical 16 Display Critical Message icon
vbQuestion 32 Display Warning Query icon
vbExclamation 48 Display Warning Message icon
vbinformation 64 Display Information Message icon

e Consider the following statement

MsgBox “ U Will have Yes and No Buttons”,vbYesNo

U will have YES & Mo BUtkons

e The next group of number controls which button is the default button for the box.

Symbolic Constant Value Meaning
vbDefaultButton1 0 First button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
Example:
MsgBox “Welcome to WELCOME
38

Edit with WPS Office

college”,vbOkCancel+vbExclamation+vbDefaultButton2,

“Test Message Box”
e This box contains an exclamation mark icon with Ok and Cancel buttons, and the

second button, Cancel, would be the default button for this form. The title bar of the

message box would show the title.

DIALOGBOXES:
A dialog box is special window displayed by the system or application to request

a response from or provide information to the user.
Types of Dialog boxes
1. Pre-defined dialog boxes-Created using Inputbox () and Msgbox () function.
2. Customized dialog boxes-Created using a standard form or by customizing an

existing dialog box.
3. Standard dialog box-file Open dialog box, Print dialog box created using the

Common dialog.

Unit Il

VARIABLES IN VISUAL BASIC

Variable:
The various values used during computation are stored in ‘variables’.

For Example:
TotalBillAmount-it holds the total invoice value
ltemRate- it holds the rate of the item.

The code will look like this:
TotalBillAmount = TotalBillAmount + ItemRate

An application is a piece of code acting on data and data is manipulated by transferring
39

Edit with WPS Office

it into variables. We can manipulate the data in the table without explicitly using
variables.
Declaring Variables:

To write programs, we need some variables. Before the variable is used , we
must inform the program that this particular word is a variable. The process or method
of providing this information is called declaring a variable. Variables are used for storing
values. It is declared using DIM statement.

Syntax:
Dim variablenamel[As type]
Example: Dim TotalBillAmount as interger
A variable has to have a name. There are some naming conventions or rules.
The name of the variable:
= Must begin with an alphabet,
= Must not have an embedded period or a special character.
= Must not exceed 255 characters.
* Must be unique within the same scope.

DATA TYPES:

Variables have a name and a data type. The data type of a variable determines
the bits/bytes representing those values are stored in the computer's memory. While
declaring a variable a data type also assigned for it. All variables have a data type that
determines the kind of data they can store.

Visual basic has a number of variable types to deal with various programming
requirements. One needs to use different types of variables for different requirements in
order to optimize speed, and memory requirements.

Data types apply to other things besides variables. When we assign a value to a
property, that value has a data type, arguments to functions to functions also have data
types. Anything in visual basic that involves data also involves data types. We can also

declare arrays of any of the fundamental types.

Variables and their Purposes:
40

Edit with WPS Office

Integer : A numeric variable holds numeric values —32,768 to 32,767.

Long : A numeric variable holds a wider range of integers than integer.
(Long Integer) -2,147,483,648 to 2,147,483,647
Single : A numeric variable which holds numbers with decimal places.

-3.402823E38 to -1.401298E-45 For negative values.
1.401298E to 3.402823E38 For positive values.
Double : A numeric variable with a wider range than single.
1.79769313486232E308 to —-4.9406564584124E-324 for negative
values
4.9406564584124E-324 t0 1.79769313486232E308 for positive values.
Currency :For holding monetary values.
-922,337,203,685,477.5808 to0 922,337,203,685,477.5807.
String : For holding text or string values.
0 to approximately 2 billion for variable length.

1 to approximately 65,400 for fixed length.

Byte :A numeric variable, holding less than the value 255, 0 to 255.

Boolean : Fro holding True or False values.

Date : Fro holding Date values inclusive of and between January 1, 100 to
December 31,9999.

Object : For holding references to objects in Visual Basic and other applications

or any Object reference.
User-defined : Number required by elements. The range of each element is the same as
the
(using Type) range of its data type.
Variant . A general-purpose variable that can hold most other types of variables
values (with number). Any numeric value up to the range of a double. With
Character values, it has the same range as for a variable-length string.
Integer:
= This data type is used to store whole numbers and cannot be used in
calculations where decimals or fractions are involved. They can store large
numbers.
41

Edit with WPS Office

* |t occupies only two bytes of memory and is quite fast when used in calculations.

= |tis bigger than Integer data type and can hold much larger values.
= |t occupies twice as much space as the Integer.
= |t must be used in large calculations and it is slower then Integer.
Single:
= |t is equivalent to Floating-point numbers. It can store fractions and provide
precision to high level.
* |t occupies 4 bytes of memory space.
Double:
= This solves the problem of precision that the single data type lacks.
* It occupies 8 bytes of memory space and used in very high precision in need.
= |t is slower than integer data type and used where accuracy is needed in
calculations.
Currency:
= |t is used for holding values related to item rates, payroll details and other
financial functions. This data type should not be used for the need of extreme
accuracy beyond the fourth decimal point.
Example: Foreign exchange interest rates for very very large values.
Boolean:
* This data type accepts only True or False values.
= Since the default value for all numeric data types is zero, the default value for a
Boolean data type is also zero.
= Zero value is interpreted as False and a non-zero value is interpreted as True.
= The VB keywords True and False can be used to assign values to the Boolean

data type.

» This variable holds date and time data.

* |t can hold date from January 1 100 to December 31 9999, and time from
00.00.00(midnight) to 23.59.59(one second before midnight) in one second
increments.

42

Edit with WPS Office

It occupies 8 bytes of memory. The data is displayed as per the settings in the
computer.

The date can be stored in British Format, American Format, or any other format
that is available or the Regional Settings on the control panel.

When other numeric data types are converted to date, values to the left of the
decimal represent date information, right of the decimal represent time. Midnight
is 0, midday is 0.5. Negative whole numbers represent dates before December 30,
1899.

The String Data Type:

The most commonly used data type is the String. Every application has details
like Name, Address, zip code, Phone number etc. All these are strings, although
some of them will consists of numeric data.

Declare the variable with this data type it will always contain a string and never a
numeric value.

The variable can be declared as ‘variable-length’ string or a ‘fixed-length’ string.
By default, a string variable is variable-length string, the string grows or shrinks

by assign new data to it.

Example

Dim ItemName As String * 30 ‘ a fixed-length string’

Dim ItemDescription As String ' a variable-length string’

The string temName will always be 30 characters long. If we assign a string of
fewer than 30 characters, ltemName will be padded with enough trailing spaces
to total 30 characters. If the string is too long for a fixed-length string, it
truncates the characters.

To remove trailing spaces while working with fixed-length strings, the functions

like Trim and Rtrim are used.

Object Data Type:

In Visual Basic, forms, controls, procedures and recordset, are all considered as
Obijects.
All programming activity resolves around these objects. Since VB is very much an
object base programming language, it is very natural to use Object data types.

43

Edit with WPS Office

An object variable refers to an object within the application or in some other

application. This object can be a Textbox or a Form or a Database.

= A variable declared as an Object is one that can subsequently be assigned to
refer to any actual object recognized by the application.

= Example:

o Dim objDb As database

o Set objDb = OpenDatabase(“c:\SISI\EIS.mdb")

A variable declared as an object occupies 4 bytes of storage.

The Variant Data Type:

A variant data type is a variable that can change its type freely. It can accept text,
numeric data or byte data easily. The variable is given the Variant data type by default.
When the variable is assigned variant data type, the conversion of data type takes place

in visual basic automatically.

Example:
Dim VarValue ‘Variant by default.
VarValue = “100” ‘VarValue contains “100” (a string)
VarValue = VarValue -70 ‘VarValue now contains numeric value 30.
‘the conversion is done automatically
VarValue = VarValue & “+" ‘Varvalue now contains the string “30+"

The variant data type is used where the data type of files are not known. While
performing calculations, make sure that the value contained in the variant is a number.
Otherwise it will throw an error.

Example: we cannot perform any mathematical operations or a function on a variant
that does not contain a number even though it contains a numeric character like 30+.

It is a good idea to determine if a variant variable contain a value that can be
used as a number. The IsNumeric function performs this task. For the concatenation
operation make sure that the values in the variants are strings. It is better to use the “&”
operator rather than “+" operator.

If both of the variants contains numbers, the + operator performs addition. If
both of the variants contains strings, then the + operator performs string concatenation.

44

Edit with WPS Office

If one of the values is numeric and the other is a string, then it will create a problem.
Visual basic first tempts to convert the string into a number. If the conversion is
successful, the + operator adds the two values, if unsuccessful, it generates a Type
mismatch error.
Special Features of Variant Data Type:
It contains special values that other variables cannot contain. These values are
e The Null Value
e The Empty Value
e The Error Value
The Null Value
Null is commonly used in database applications to indicate unknown or missing
data. Assigning Null to a variant variable does not cause an error, otherwise it will cause
an error.
The Null keyword is used for assigning the variable. Example: Z = Null.
The IsNull function is used to test if a Variant variable contains Null.
Example: If IsNull(x) Then
Debug.prin
End If
We can return Null from any function procedure with a Variant return value.
Variables are not set to Null unless we explicitly assign Null to them.
The Error Value
In a variant, Error is a special value used to indicate that an error condition has
occurred in a procedure. An error value is created by converting a real number using the
CVErr function. However, unlike other kinds of errors, normal application—level error
handling does not occur.
The Empty Value
A variant has the Empty value before it is assigned a value. The Empty value is a
special value different from 0, a zero-length string (*"), or the Null value. We can test for
the Empty value with the IsEmpty function.
Example: If IsEmpty(x) Then statements.

A variant can be assigned the Empty value using the Empty keyword. When a
45

Edit with WPS Office

variant contains the Empty value, we can use it in expression, where it is treated as
either 0 or a zero-length string, depending on the expression.

The Empty value disappears as soon as any value is assigned to a variant. A
variant always takes up 16 bytes, regardless of the type of data stored in it. Objects,
strings, and arrays are not physically stored in the variant.

Four bytes of the variant are used to hold either an object reference or a pointer
to the string or array. The actual data is stored elsewhere.

The Scope of a Variable:

Visual Basic is event driven. Code is written for each control and individually for
each of that control, while variables are declared for each event or procedure. In order to
avoid locking up the computer’'s memory and causing confusion, variables are limited
with scope. The scope of a variable is the range from which the variable can be
referenced — a procedure, a form, and so on.

The value of a variable in one procedure cannot be accessed from another
procedure. The value of a variable is local to that procedure. Variables declared with the
Dim statement within a procedure exist only as long as the procedure is executing.

When the procedure finishes, the value of the variable disappears. These
characteristics allow using the same variable names in different procedures without
confusion. The scope of the variable is determined by the way it has been declared. It
can be procedure-level variable or a module-level variable.

Example:
MODULE1
Public x as Integer

FORM1 APPLICATION

Public y as Integer MODULE1
Private Sub Command_click()
Dim x as Integer

X =30
Module1.x =10
Form1.y = 20

X =30

46

Edit with WPS Office

Msgbox “Module1.x = “ & str(Module1.x)

Msgbox “Form1.y = “& str(Form1.y)

Msgbox “X = “ & str(x)

Load Form2
End Sub
Private Sub Form_Load()

Msgbox “Module1.x = “ & str(Module1.x)

Msgbox “Form1.y = “& str(Form1.y)

Msgbox “X = “ & str(x)
End Sub

Procedure level variables are recognized only in the procedure in which they are
declared. These are also known as local variables and also declared using the DIM
keyword.
Example:

Dim Amount As Integer

Local variables are available only to that procedure where they have been
declared and another procedure cannot alter or affect the value in this variable. Any
change made by a procedure will be restricted to its variables, although two procedures
can have variables with the same name. Variables declared using the Dim keyword

exists only as long as the procedure is executing.

Static:

Values in local variables declared with Ststic exist the entire time the application
is running. Variables are declared as static using the ‘Ststic’ keyword.
Example:

Static count As Integer

Variables declared using the static keyword exist as long as the application is
running, and are usually used to update counters. Since all local variables cease to exist
when the procedure terminates, the variables will be initialized when the procedure is
called again.
For Example:

47

Edit with WPS Office

To count the total number of customers for a day, this counter is declared in the
procedure that prints the invoice and if we exit this procedure for some reason, and call
it again, the total number of customers for the day will start from 0. In order to avoid
this problem, the counter can be declared as a Static variable. In this case the value of
the counter will remain in the memory even if the procedure terminates. When the
procedure is invoked again the last value will be available to it.

Advantage: This variable can be accessed only by this procedure and not by any other
procedure.
Module Level Variables:

Variables declared as module-level variables will be available to all procedures
within that module. They will not be available to procedures in other modules. A module
level variable is declared using the Private keyword, in the declaration section of the
module.

Example: Private intCount As Integer

The declaration must be in the declaration section of the module. In order to
make available to all other modules, use the Public keyword. Public variables cannot be
declared in a procedure. They can only on the declaration section of a module.

Public intTemp As Integer

Scope Private Public

Procedure-level Variables are private to the | Not applicable. You cannot declare
procedure in which they | public variables within a

appear. procedure.

Module-level Variables are private to the | Variables are available to all

module in which they appear. | modules.

Public and Private Variables:

If the variables are local to their procedures there will be no problem. If we have
public variable and a private variable with the same name then they will need to be
referenced with some caution. This is very similar to the way filenames are handled in
MSDOS and UNIX, using the relative pathname and the absolute pathname.

Example:

Public x As Integer
48

Edit with WPS Office

X=15"the assignment is done later, and in a procedure we have decalred

Dim x As Integer

X=10
Assigning the variable a in procedure will give the value “10".

Accessing x outside the procedure will give the value “15”". If we have to access the
variable in the Module-level from the above procedure we will have to refer to it as
follows

Debug. print Module1.x
This will display the value “15". In this case the public variable is referred to by its full
name. The local variable will always be accessed in preference to the public variable.
This is called ‘Shadowing’.

Declaring Variable

The DIM statement is used to declare the variable and other methods are also
available. By declaring a variable in the declaration section of a form, standard, or class
module, rather than within a procedure, the variable will be available to all the
procedures in the module.

By declaring a variable using the Public keyword, it will be available throughout
the application. Declaring a procedure-level variable using the static keyword preserves
its value even when a procedure ends.

We can use a variable without first declaration. Visual Basic automatically
creates a variable with that name. This is called Implicit Declaration. But it gives some
problems.

For example:
Private Sub Cmdsave_Click()
Intvoice = Intvoice + Intsale
Print Intvice

End Sub

The function above will not result in an error but the value will print in the form as
0. this is because when VB comes across “Intvice” it automatically creates a new
variable with that name, as it does not understand the spelling mistake. Implicit
declarations are not for serious programmers or applications. They are at best useful

49

Edit with WPS Office

for simple test routines.

One way of correcting this habit is to enforce variables declarations before they
are used and this can be done using the “Option Explicit” statement. This will avoid the
problem of misnaming variables and VB will warn you whenever it encounters a name
not declared explicitly as a variable.

Place the Option Explicit statement in the declaration section of a Form, Module
or Class.

The other method is : From the Tools menu, choose Options, click the Editor tab
and check the Require Variable Declaration option. This will automatically insert the
Option Explicit statement in any new module. It operates on a per-module basis and it
must be placed in the declaration section of every form, standard and class module to
enforce explicit variable declarations. It used to catch these kinds of errors.

Constants:

The value, which does not change during the execution of the program, is called
constant. While performing calculations, we need to work with figures that are constant.
Example:

To find circumference of a circle 2*(3.14)*r where pi = 3.14, r is radius of circle.
The value of pi can be represented as 3.14. This number can be assigned to a Constant
and can be used in all calculations.

Constants store values like variables, but as the name implies, those values
remain constant throughout the execution of an application. Using constants can make
the code more readable by providing meaningful names instead of numbers. There are
number of built-in constants in visual Basic, it can also created by own.

Creating own Constants
Syntax:
[Public | Private | Const constantname [As type] = expression

= constantname should be valid name.

* Astypeis the Data type.

= Expression is the numeric or string value that has to be assigned to the constant.
Rules:

= Must begin with an alphabet,

50

Edit with WPS Office

= Must not have an embedded period or a special character.
= Must not exceed 255 characters.
= Must be unique within the same scope.
Example:
Const conpi =3.14
Dim IntRad = Val(Text1.Text)
Circum = 2 * conpi * IntRad
Other than user defined constants there are many intrinsic or system-defined
constants provided by applications and controls. Visual Basic constants are listed in the
Visual Basic (VB) and Visual Basic for Applications (VBA) object libraries in the object
browser.
Scope of Constant
By declaring a Constant in the declarations section of a form, standard, or class
module, rather than within a procedure, the Constant will available to all the procedures
in the module. By declaring a constant using the Public keyword, it is available
throughout the application. Declaring a constant in a procedure will be available to that
procedure only.
Circular References
Constants can be defined with reference to other constants.
Example:
Public Const conA = conB * 1.414
Public Const conB = conA * 2
Since both the constants are available throughout the application, Visual Basic will
generate an error. This method of defining constants where each is defined in terms of
the other is called Circular Reference. Visual Basic will not proceed with the execution

of the program till this circular reference is resolved.

A Word of Caution on Variables:

1. A variable in the module cannot have the same name as any procedures or types
defined in the module.
2. A local variable can have the same name as public procedures, types, or
51

Edit with WPS Office

variables defined in other modules. If this variable is accessed from another

module, it must be qualified with the module.

Converting Data Types:

Visual Basic provides functions to convert values into data types that are needed.

They are as follows:

Conversion Function Converts an Expression to
Cbool Boolean
Cbyte Byte
Ccur Currency
Cdate Date
CDbl Double
Cint Integer
CLng Long
CSng Single
CStr String
Cvar Variant
CVErr Error

Note: Values passed to a conversion function must be valid for the destination data
type or an error will occur. For example, to convert a Long to an Integer, the Long must

be within the valid range for the Integer data type.

Arrays:
An Array is a set of similar items. All items in an array have the same name and

are identified by an index. Arrays allows to refer to a series of variables by the same
name and to use a number (an index) to tell them apart.
Example:

Dim num(10) as integer

Dim x(10 to 20) as integer
52

Edit with WPS Office

Dim x(5) as variant
Types of Array:
One Dimensional Array
Fixed-Size Array
Multidimensional Array
Dynamic Array
One Dimensional Array:
It consists of single dimension.
Syntax:
Dim Varname [([subscripts])] as [New] type [varname..]
Example: 1
Dim num(10) as integer
In this case, ‘num’ is set of 11 integers. Num(0) is the first element of the array.
Num(10) is the eleventh and the last element of the array.
Example: 2
To compute monthly sales for an organization. Sales figures for each month
have to be calculated. This means that we need to have at least 12 variables. SaleJan,
SaleFeb, etc. when it is don in one variable it is difficult processing. Therefore using an
array, we can declare the variable as follows.
Dim Saleval(11) as Long
Since there are 12 months, Saleval(0) will hold the sales figures of the first month
and Saleval(5) will hold the sales figures of the sixth month an so forth.
Fixed-size Arrays:
In the Fixed-size array, the total number of items must be already known.
Declaring Fixed-size Arrays:
Fixed-size Arrays are declared just like declaring the variables. The scope of the
array will depend upon the method of declaration.
1. To create a local array, use the Private statement ina procedure to declare the
array.
Dim counters (10) As Integer
2. To create a module-level array, use the Private statement in the declaration
53

Edit with WPS Office

section of a module to declare the array.
Private counters(10) As Integer
3. To create a public array, use the Public statement in the declaration section of a
Form.
Public counters(10) As Integer

In the case of fixed-size arrays it is compulsory to enter the upper bound of the
array in the parenthesis. The upper bound is the upper limit for the size of the array. To
specify the lower bound of an array, provide it explicitly using the To keyword.

Dim counter(1 To 10) As Integer

In the above statement, the index numbers of counters range from 1 to 10. The
Lbound is a function that returns the lower bound of an array. The Ubound returns the
upper bound of an array.
Example:

Dim sum(20)

X= Lbound(sum)

Debug.print X
This will display 0 in the debug window.
Multi-dimensional Arrays:

Arrays can have more than one dimension. A table of data will be represented by
a multidimensional array.
Example:

To record the sales figures for twelve months for three of the departments in the
organization, then the array can be declared as follows.

Dim Salecal(11,2) As Integer

Here the subscripts 11 indicates the months and the subscripts2 indicates the
departments. This is a two-dimensional array. We can also have three-dimensional
arrays. To record the sales of five products in three departments for twelve months then
we need a three-dimensional arrays.

Dim Saleval(11,2,4) As Integer

Where the subscript 11 indicates months, the subscript2 indicates the three
departments and subscript3 indicates the 5 products. Multidimensional array takes up a

54

Edit with WPS Office

lot of space.

Dynamic Arrays:

Dynamic arrays are used when the number of elements for an array is not known.
For example, for reading a string into an array, we may want to have the capability of
changing the size of the array at run time.

A dynamic array can be resized at any time and this helps to manage memory
efficiently. For example, we can use a large array for a short time and then free memory
to the system when we are no longer using the array. We can increase the size of the
array after having declared a smaller array.

The ReDim is used in conjunction with the Dim statement while declaring these
arrays. The alternative is to declare an array with the largest possible size and then
ignore array elements that are not needed. This will result in the operating environment
to run low on memory.

Declaring a Dynamic Array:
1. Declare the array aas dynamic by giving it an empty dimension list.
Dim sum()
2. Use the ReDim ststement to allocate the actual number of elements.
ReDim sum(11,4)
Note:

ReDim is an executable statement and can appear only in a procedure. Unlike the
Dim and Static statements, it makes the application carry out an action at run time. We
can use ReDim each time we want to change the upper or lower bounds of a dimension.
We cannot however change the number of dimensions.

The rules of syntax for dynamic arrays are same as they are for fixed sized arrays.
The scooping rules are also the same as they are for other variables.

Example:

Dim salval () As Integer

“this statement will create an open-ended array”

ReDim salval(12,6)

This will create a two-dimension array. The values for the subscripts of the array

55

Edit with WPS Office

can be passed using variables.
Example:

Dim salval() As Integer

Dim Months As Integer

Dim Depts As Integer

Months =12

Depts =6

ReDim salval(Months, Depts)

In this way, if the number of departments vary ;ater on the arrays and the
program need not be modified.

The Preserve Keyword:

Whenever the ReDim statement is used the previous array and its contents are
destroyed. Visual basic resets the values to the Empty value(for variant arrays), to
zero(for numeric arrays), to a zero-length string(for string arrays), or nothing (for arrays
of objects). This is useful to prepare the array for new data, or to shrink the size of the
array to take up minimal memory.

To expand or increase the size of the array ReDim by itself is not good news. In
order to allow the array to ‘grow’, the Preserve keyword is used. The statement

ReDim Preserve Salval(12,9)

Will not destroy the data that has already been entered. It only add the value for
the second dimension. In this case more columns are added to the table.

In the case of the single dimension dynamic array, we can enlarge an array by
one element without losing the values of the existing elements using the UBound
function to refer to the upper bound. The UBound function can be used to get the bound
of the array.

ReDim Preserve DynSalval(Ubound(DynSalval)+1)

26

Edit with WPS Office

More on ReDim:

1. Only the upper bound of the last dimension in a multidimensional array can be
changed while using the Preserve keyword, if any of the other dimension, or
lower bound is changed, a run-time error will occur.

Dim sum(11,2,4) As Integer
It can be resized using the Preserve keyword as follows
ReDim Preserve sum(11,2,6) As Integer
The following statement will return an error
ReDim Preserve sum(15,2,6) As Integer

2. Date type of an array cannot be changed using the ReDim function except the
variant data type. If the array is contained in the variant data type, the type of the
element is changed using an As type clause unless you are using the Preserve
keyword. The preserve keyword does not allow the data type to change.

3. if the size of the array is reduced, then the data in the eliminated element will be
lost.

4. The ReDim statement acts as a declarative statement. If the variable it declares
does not exist at the module or procedure level, a new variable will be created. If
another variable with the same name is created later, ReDim will refer to the later
variable and will not cause a compilation error, even if Option Explicit is in effect.

5. ReDim should not be used as a declarative statement, but simply for

redimensioning arrays.

57

Edit with WPS Office

step 1 :vb enter

step 2 : form1 (save project, form)

step 3 : control, click, drag into the form
(textT
text2
text3
Button 1)

step 4: button1 double click

step 5 : enter code window

step 6:
private sub buttonl_click()

text3.text = (1/2 * Text1.text *Text2.text)

End sub

58

Edit with WPS Office

