GOVERNMENT ARTS AND SCIENCE COLLEGE,KOMARAPALAYAM
Department of Computer science

17PCS02-Advanced Computer Architecture

UNIT-1I

Handled BY

K.SHANMUGA VADIVU

NN
g

2/’PiP(’-'““iﬂg and Superscalar
. TeChniques;

A linear pipeline processor is a cascade of processing stages which are linearly connected to
perform a fixed function over a stream of data flowing from one end to the other. In modern

ied for instruction execution, arithmetic computation, and memory-access
jouc:

N SR o T A O

mputers, linear pipelines are af
operations

$1.1 Asyhchronous and Synchronous Models

ear pipeline processor is constructed with k processing stages. External inputs (cperands) are fed into
ipeline at the first stage.§). The pyécq,sscd results are passed from stage §; to stage Siap, forall =12,
.. The final result emerges from the pipeline at the last stage . ; '

Depending on the control of data flow along the pipeline, we model linear pipelines in two categories:

u

e

mchronous and syncnronous. 3

nchronous Model As shown in Fig. 6.1a, data flow between adjacent stages in an asynchronous

£ fFeiine is controlled by a handshaking protocol. When sw to transmil, it sends a ready signal to
Kiage S;,,. After stage 54 receives the incoming data, 1l returns an acknowledge signai to §;. '

fi+Asynchronous pipelines are useful in designing communication channels in message-passin multicom-

A e - .——:'——'——"-"'-" n . 0 . s
8hliters where pipelined wormhole routing is practiced (see Chapter 9). Asynchronous pipclines may have a
iable throughput rate. Different amounts of delay may be experienced in different stages.

dd

. Y

Camputer Achitacture

o= s ,qdvon“‘
22
— > Duput
— W—
Input = L Ready
s Ready S . Sk k
Ready 1 2 g ___— Agk
A : “Ack e

Ack

(a) An asynchronous pipeline model

L

Cwtput
_——\,

(b) A synchronous pipeline model

—— Time (dock cycles)

% 1 2 3 4
} Capiions:
i.‘ S, X { S, =stage ’
T L = Latch
sz “ X [1 = Clock period)
Stages T 1= Maxirum stage delay
53 ! - f d= Lalch delay

Ack = Acknowledge signal.

ey = g
PR A e R e g R

Synchronous Model Synchronous pipelines are illustrated in Fig. €.1b. Clogked datches are used 6

interface between stages. The laibhes are made with master-slave flip-flops, which can :solate in]
ouﬁﬁpﬁﬁiﬁ of £clock pulse, all lztches wransfer data to the aext stage[simul-anzously.
o

Th,
in all stages. These delays determine the clock period and thus the speed of the pjpelire. Unless orkerwise
specified, only synchronous pipelines are studied in this book.

The utilization pattern of successive stages in a synchronous pipelire is specifigd by a reservarion, (able.

For a linear pipeline, the utilization follows the diagonal streamlire pattern shown in Fig. 6.1c. This table

is essentially a space-time diagram depicting the precedence relationstip in using the pipeline stagas, 7oz s
k-stage linear pipeline, 4 c.ock cycles are needed for data to flow througk. the pipeljne,
Successive lasks or operations are le'uated one per cycle to eater the pipeline. Duce 1e pip=line is fil}z:

up, one result emerges from the pipeline for each additional cycle. This througapjit s sustained only if the

,~ successive tasks are independent of each other. d

s gy

T ST _,_-‘_y_‘“x._g“) '4'1.55&1.&&;'&%“@;.:&.. i
i BB

i ht;e stages are combinational logic circuits. It is desired to have approximately equal delavs: .

S

g 4.2 Clocking and Timing Control

. The clo=k cycle 7> a pipeline is determined below. Let
12 tim= delay of a latch, as shown in Fig. 6.1b.
it sl L

L

Bt sipelining =nc Sunerscalar Techniques
o

be the time delay of the circyjty :
- ‘lh’y n Slage

t
Clock Cycle and Throughput Denote the maximum stage delay as r"".and We can write 7

T = m‘g_x{q]f+d=fm+d

At the rising edgz of the clock puls_e, the data is latched to the master flip-flops of eacp iy
clack pulse Fas a width equal to d. In general, T, >> t_l'b'y one to two orders of magnityge This g8
- maximum stage delay 7,, dominates the clock period.

The pipeline freguency is defined as the inverse of the clock period:

ul
f_T

If one result is expected to come out of the pipeline per cycle, frepresents the maximupm gy
ppeline. Depending on the initiation rate of successive tasks entering the pipeline, the acryq] e
the pip<line may be lower than f. This is because more than one clock cycle has elapsed between:
“tgsk indtiations.
El'ock § kewing Ideally, we expect the clock pulses to arrive at all stages (latches) at :
swever, Cue tc a problem known as clock skewing, thie same clock pulse may arrive at dif
ime offset of r. Let 1, be the time deiay‘ of the longest logic path within a stage and i
{zgic path within a stage. :

To avoid a racs in two successive $tages, we must choose T, 2 fm, t sand d <t ~ 5.1
franslat= into the following bounds on the clock pétiod whefi clock skew takes effect:

d+ b t8ST STy T hyin—5

In tae 1deal case.s = 0,_t,,,,,,, = 1, and ty;, = d. Thus, we have 1= T+ d, consistent with t
Eq, 6.1 without the effect of clock skewing. :

25.1.3 Speédup;r_;Efﬁ;iency, and Throughput _—)
; ".fieally_. a linear pvipelix_xe of kstages can‘;':focl:ess ntasks in k+ (n - 1) elock cieles, where ki

i concpléfe the execution of the vety first task and thi& remaining n — 1 tasks réquire n -
2 atal time requitedis = _— : ge. :
Ti=[k+(n—-1))T

where T is the clock period. Consider an equivalent-function nonpipelined proeessor
delay of kt . Tke amount of time it takes td executt n tasks on this niohpipelitied pr

gﬁeedup Factor The speedup factor of a k-stage pipeline over an egivalent 00
fined as '

Ty

k=—

T

‘nkt _ nk
kt+(n=-Ht k+{n-1)

F

[

4
129 E -

. a? 231 n Advonced Computer Archltcrypg
W i mf The maximum-throughput [oceurs whcx) I:,,F .; i usn =+ oo, This coincides with the speedup definit;

k given in Chapter 3. Note that H, = Ex f= E/T= Wk, Oder relevant factors of instruction pipelines w’lf;,n
A Hl be

discussed in Chapters 12 and 13.

A dynamic pipeline can be reconfigured to perform variable functions at different t \

traditional linear pipelines are s.latip pipelines bcc'a'use they are usedto perform fixed ;_::ws: The
pelinc allows feedforward and feedback conncctions in addition to the strimiling co nctions,
ome authors call such a structure a nonlinear pipeline. .~ nnections,

Adypamic pi
For this reason, $

6.2.1 Reservation and Latency Analysis

In a static pipeline, it is relatively easy to partition a given function into a sequence of linearly ordered
subfunctions. However, function partitioning in a dynamic pipeline becomes quite involved because the
pipeline stages are interconnected with loops in addition to streamline connections.

A multifunction dynamic pipeline is shown in Fig. 6.3a. This pipeline has three stages. Besides the
streamline connections from 5; 10 5 and from S; to 5y, there is a feed forward connection from §| to S; and
two feedback connections from 5y to S; and from 53 to 5.

These feedforward and feedback connjc’npl_-nimnkc the scheduling of successive events into the pipeline

a pontrivi “With these connections, the output of the pipeline is oot necessarily from the last stage. In
fact, following different dataflow patterns, one can use the same pipeline to evaluate different functions_—

Output X

Input

— Time — Time
12346678 123 456
84[x X[[x s,y Y
Stages S| [X X Stages Sz Y
S x| |x] [x] | sy [y] ¥l Y
(b) Reservation table for function X (c) Reservation table for function Y

hat dataflow

ine is trivial in the sepse U
ore interesting because
rated

Reservation Tobles The reservation table for a static linear pipe

r streamline. The reservation table for a ic pipeline becomes m

follows a li
reservation tables can be gene

58 a nonlinear pattern is followed. Given a pipeline configuration, multiple
for the evaluation of different functions. ol
Twro reservation tables are givea in Figs. 6.3b and 6.3c, corresponding (0 2 function X il fu‘i‘:léos \;
: r;xpeclivcly. Each function evaluation is specified by one reservation table. AMW
F- single reservation table. A dynamic pipeline may be specified by more one reservation table. -

e

!‘ m,dinlﬂl i s“pﬂ-“nfnf Techniques m' 233
Each reservation table displays the time-space flow of data through the pipeline for one function evaluation.

rent functions follow different paths through the pipeline
0 a reservation table is called the evaluation time of a g:ven function. For
ate, and function Y requires six cycles, as shown

piffe
The number of columns i
example, the function X requires eight clock cycles to evalu

in Figs. 6.3b and 6.3c, respectively.
table corresponds to each function evaluation. All initiations to a static pipelinc use

e. On the other hand, a dynamic pipeline may allow different iniziations to follow a
The checkmarks in each row of the reservation table correspond Lo the time instants

A pipeline initiation
{he same reservation tabl

mix of reservation tables.

(cycles) that 2 particular stage will be used.
There may be multiple checkmarks in a row, which means repeated usage of the sam= stage in diffcrent

guous checkmarks in a row simply imply the extended usage of a stage over morc than one

cycles. Conti
cycle. Multiple checkmarks in a column mean that multiple stages need to be used in parallel during a

particular clock cycle.
he number of time units (clock cycles) between two initiations of a pipeline is the

Latency values must be nonncgative integers. A latency of k means that two initiations
re initiations to use the same pipeline stage at the

Lotency Analysis T
latency between them.
are separated by & clock cycles. Any attempt by two or mo
same lime will cause a collision.

A collision implies resource conflicts between two initiations in the pipelinc. Therefore, all collisions must

¢ initiations. Some latencies will cause collisions, and some

[be avoided in scheduling a sequence of pipelin
Latencies that cause collisions are called forbidden latencies. In using the pipeline in Fig. 6.3 o

will not.
cvaluate the function X, Jatencies 2 and 5 arc forbidden, as illustrated in Fig. 6.4.
—= Time
1 2 3 4 5 6 7 8 9 10 "
s, X4 X5 Xy | Xy Xg |Xg. % Xy, X3
Slages S, X4 Xy Xp Xa, X3 X3, Xy Xy e
S X4 X1 % Xy Xg. Xy Xg. X3. X4
(a) Collision with scheduling latency 2
—— Time
1 2 3 4 5 6 7 8 9 101
S0 % Xy. Xz X
Stages S, X4 X4 X3 X, “re
5 Xy X, Xy | % X,

(b) Coliision with scheduling latency §

e, Y\ 3

i TR e
R

iations X; and .X; collide in stage 2 attime

The ith initiation is denoted as .X; in Fig. 6.4. With latency 2, init
llisions are shown at times 5,6,8, .. ctc.

4. Al time 7, these initiations collide in stage 3. Similarly, other co

B SN T A £ 20 AL O LT

st VT TN, S
? | T e T T
v NRURS B l‘ | |

f'_-— "L“"-l'" ,‘FI hﬂ"" e
Advarces
A& cyeles
5 clock LY
p—— - ccheduted 3°€

234 | . 4b. where X, and Ay Arc sche

¢ gre shown wn g 075 1 the
- erms for lsrency Ararks)

The collision pat oy two checkivd &

o 1 e & [}
apart. Their first collision et ' 1c imply 10 check the distance between

v < o need
-1 8 fortedden latency. ne
. Jm“"thr reservation hie Eor example, the Jistance
o “b L § implyving that 5 =8 farhedden IBteny -~ &
e, 5, & 7 wre all seen w0 be fortadden from inspes i T funct
sver the forbidden Jatencres 2 e inifiations.
i 3 CCESS .
|atencics berwedn Qo 3 mdeﬁnitejy‘ Figur

\ & \ n.nlk
} ¢ sec one
fst mard and 1
between the ©

same I
row 5, = Fig ©

Simulacty. istEnowc b
From the reservasoe tabic 10

4 5 and
Eug. 6 3¢, we diec

eb5

— of sermissibie nonforbidden o ;
recuonce 15 § SEQUESSE O PEE 2 subsequence (€Y L sion.
e + cvcle i & Litency SEQUEDCE which repeats the same famtion X without causing a.cc_lll
A larency © iy A the pipeline it Fig 6300 €Y aluate the T g, ... This imphes
illustrates latency cycles it &S) oel,& & BT

soe | Yy §
1 (1.) represents e nsnite 1a1end)

. 3 v.

For cxample, the lateady €€ vy ome cycle and aight cvelas altmatel
: hons O D sk are sCpanaitd Oy ORE < 3 J

that SUCCESSIVE ILIANOTE O § ew f

— Cyoe

epests —— =t~
. _--4-5151"13192021

b - - e
. %y K)oy Ky Xy Xe{XaXe
s; X Kyl KKy Xy X/ Xal X

Cycle TeDesS)

- ;
¢ o 7 72 73 94 15 16 7 18 19 20 27

i « 56 T & 8 W .
St X TR, XKgiXgy A.l_—l‘l:}..:l.s‘xa‘,x‘ X | Xs| %7 Xs]
T T ok Palke eXs| [Xsis X5|X7| o+
S o o e b a1

) Lmtency cy=le (3)= 3. 2 3 X -canwwc}cfs

Cycie repeats i3
-z J 45678 s':-:‘.z"au'.ﬂanu'fgzg 27

Syl 4 | XCDT || Pel%i®] | X K] %
CECECERRCECEEECRD AT
s Pl I K 15 Dl (%] X’J“ X

{c) Leency cycig (E, =€, £, €, €, with @n average lstency =1 6

The average laiency of & ietency cycle 1s obizined by dividing the sum of] Jztenci
. i - all Jetencies b)
igmnqet elong the cycle. The latency cycie (1, 8) thus hes a0 average latency cf (1 + 82 =l"4ﬂ;e :u:,:::,;f
eycle is & latency cycle which contzms only one latency value, Cycles (2) and 16) in Figs. 6.5b an 6%t

both constant cycles. The everage latency of & constant cycle is simply the latzacy itself. In the next sectio
: ,

we describe bow o obtain these latency cycles systemetically,

Pipa’inng Ind § *perscatar Techniques

6.2.2 Collislon-Free Scheduling \ ;

When schealuling events in a nonlinear pipeline, the main objective is tg giyg .
beétween initiations without causing collisions. In what follows, we present 5 10 the Mottey . =
such collis on-fre: scheduling. fySenate Rehoge T ¥ 7

s

'We stuly below collision vectors, state diagrams, single cycles

latercy (MAL). This pipeline design theory was originally developed greedy cycp,,

Collision * . _ ¥ Davidson 155, ™.,

-olfi on Yectors .By examining the reservation table, one can distinguish M Uadg =

f-om the set of farbidden latencies. For a reservation table with n columng th: o oo o B

i S n— | The permissible latency p should be as small as bossible_ The Ch’oi ML iy,

mn-1. EE My, e’
A pemmissiblz latency of p = | corresponds to the ideal case. In theory, 3 | b

achieved b a static pipeline which follows a linear (diagonal or mnm') n:‘::f Wiy, ™

Fig. 6.1c. ita gy,

The combined set of permissible and forbidden latencies can be easily disoy, v
whizk is an m-bit binary vector C = (CpCp-1 -..CoC)). The value of C,= ;f.{f Wang, -
and C; =) if lazncy i is permissible. Note that it is always true that C, = | cu::- -
forbidden latency. : B § YO -

Far tk2 two reservation tables in Fig. 6.3, the collision vector Cy= (1011010) 5 ..
and Cy =(1C10) for function Y. From Cy, we can immediately tell ok Tty 7 € T
anc latencie¢ 6, 3, and 1 are permissible. Similarly, 4 and 2 are forbidden latenies sd 3 .~~~
latencies for function Y. T Ry

State Ciagrams From the above collision vector, one can construct 3 siate 2o o
psrmissible state transitions among successive initiations. The collision vector, ik iy,
the initial statz of the pipeline at time 1 and thus is called an initial collision vecior L=
latzncy w:tkin tae range 1SpSm -1 T
The aext stare of the pipeline at time ¢+ p is obtained with the assistance oi m minnz == :
iaFig. €.6a.The initial collision vector C ixinitially loaded into-the register. The regiser s 3
fght. Each 1-bit shift corresponds to an increase in the latency by 1. When 20 bit emerges ==2=
¢feer p shifls, it means p is'a permissible latency. Likewise, a | bit being shified o zem =
thus the torresponding latency-should be forbidden. :
Logical 0 enters from the left end of the shift register. The next stafe affer p s 5=
bitwise-ORing the initial-collision vector with the shifted register contens. Fox exmmpie, 525
state Ce = (1011010), the next state (1111111) is reached afier one right shiftof b regivz, B3
{1011011) is -eached after thiree shifts or six shifts. ’

e e e o s forapi
é. 5 Example 6.2 “ The state transition diagram for P?’r,
i . X. From the im'tial.m:euuuot‘o;i;
permissible Yatencies 6,3 o
the same state after ¢ ez

A statz diagram is obtainéd in Fig. 6.6b for function
transiticns are possible, corresponding to the three
vector. Simiiarly, from state (1011011), one reaches

S)

¥

> |
2

LT -k-A-:- ey r_;’y-

M‘;‘Li"“‘

e 3

When the number of shifts is m + 1 or greater, all ansitions are redyre
cxample, after cight or more (denoted as §7) shifts, t.hlc Dext state must be ih
state the transition starts from. In Fig. 6.6¢,a spm: d\lm 18 obtained for
using & 4-bit shift register. Once the initial collision vector is determined,

uniquely determined

Advonced Computer ArchRecure

Cled back to the mitial state.
¢ inal state, regardless of w lud:
the reservation table in Fig. 6 3,
the comresponding state diagram 5

Cy) = Initia c\w-sion. vactor

LA R J /
_——
oy

T ——tdad ‘ see 1_.___,-0- safe
T | 1" colksion

——
—

L

 —

The 0's and 1's in the present stete, say a1 time ¢, of 2 staie diagram indicate the permissible and forbidden
latencies, respectively, 2t time 1. The bitwise ORing of the shifted versicn of the present state with the initial
collision veetor is mean! to prevent collisions from future initiations starting at time + 1 and onward.

Thus the state diagram covers all permissible state transitions that avoid collisions. All latencies equal to
or greater than m are permissible. This implies thet collisions can ajways be avoided if events are scheduled
far zpant (with latencies of m™). However, such long latencies are not tolerable from the viewpoint of pipeline
throughput,

Greedy Cycles From the stale dizgram, we czn determine optimal latency cycles which result in the MAL.
There are infinitely many latency cycles one can trace from the state diagram. For example, (1, 8), (1, 8,
6,8),(3),(6), (3,8),(3,6,3) ..., are legitimate cycles traced from the state diagram in Fig. 6.6b. Among these
cycles, only simple cycles are of interest.

I (s o ot e

I~y

5

Pipelinng ond Superscalor fechniques &

Asunple eycle ia a lateney cyele in which each stare appears anly ance In the state diagram in Fig. 6.6,
only (3), (6), (8), (1, 8), (3, 8), and (6, B) are simple cycles The cyels (1, 8, 6, 8) is not simple because it
travels through the state (1011010) twice. Similarly, the cycle (1, 6.3, %, 6) is not simple because it fepeits
the state (1011011) three times.

Some of the simple cycles are greedy cycles. A greedy cycle is one whese edges are all made with minimum
latencies from their respective starting states. For example, in Fig. 6.6b the cycles (1, 8) and (3) are greedy
cycles. Greedy cycles in Fig. 6.6¢ are (1, 5) and (3). Such cycles must first be simple, and their average
Iatencies must be lower than those of other simple cycles. The greedy cycle (1,) in Fig. 6.6b has an average
latency of (1 +8)/2 = 4.5, which is lower than that of the simple cycle (5, 8) = (6 + 22 = 7. The greedy cycle
(3) has a constant latency which equals the MAL for evaluating function X without causing a collision.

The MAL in Fig. 6.6¢ is 3, corresponding to either of the two greedy cycles. The minimum-iatency edges
in the state diagrams are marked with asterisks.

Al least one of the greedy cycles will lead to'the MAL. Tive collision-free scbeduling of pipeline events
is thus reduced to finding greedy cycles from the sct of simple cycles. The greedy cyele yielding the MAL is
the final choice.

2.3 Pipeline Schedule Optimization

An optimization technique based on the MAL is given below. The idex is to insert noncompute delay stages
into the original pipeline. This will modify the reservation table, resulting in 2 new collision vector and an
proved state diagram. The purpose is to yield an optimal latency cycle, which is absolutely the shortest

Bounds on the MAL In 1972, Shar determined the following bounds on the minimal average lotency

) achievable by any control strategy on a statically reconfigured pipeline ex:cuting a given reservaiion
table:

(1) The MAL is lower-bounded by the maximum number of checkmarks in any row of the resenvation
table.

(2) The MAL is lower than or equal to the average latency of any greedy cycle in the state diagram.

(3) The average latency of any greedy cycle is upper-bounded.by the number of 1's in the initial collision
vector plus 1. This is also an upper bound on the MAL.

Interested readers may refer to Shar (1972) or find proofs of these hounds in Kogge (1981). These results
suggest that the optimal latency cycle must be sclected from one of the lowest gresdy cycles. However,
a greedy cycle is not sufficient to guarantee the optimality of the MAL. The lower bound guarantecs the
optimality. For example, the MAL = 3 for both function X and function Y and has met the lower bound of
3 from their respective reservation tables.

From Fig. 6.6b, the upper bound on the MAL for function X is equal to 4 + | = 3, a rather loose bound.
On the other hand, Fig. 6.6¢ shows a rather tight upper bound of 2 + 1 = 3 on the MAL. Therefore, all greedy
cycles for function Y lead to the optimal latency value of 3, which cannot be lowered further.

To optimize the MAL, one needs to find the lower bound by modifying the reservation table. The approach
is 10 reduce the maximum nuraber of checkmarks in any row. The mudified reservation table must preserve
the original function being evaluated. Patel and Davidson (1976) have suggested the use of noncompute
delay stages to increase pipeline performance with a shorter MAL. Their technique is described below.

RN

wl ol
~‘,'M¢Wt"

w-n‘(

— [e erervelion wable and
f\mm'nf‘ .
- per, The - gt we o
o il g, ate \0 any aEepat
pr g) prinred W the sreee '\Kh cases he Tritation
~ ot " Y
[far = gt & o W P dnouls T LS il I'\"‘"‘““ n !‘ -
R -'ﬂ R e e amined R jenproveme
Ui cpei. S — jriteno® O «)
e .
e e :
; ' ~ We describz
o gveriepped manne!
. - by & ppeiee : pe st died jmelad:
—— pe ewecused 19 . a0 o Topics w .
— f pusplnis
- gl and O S

ot PECHNES fw Ls

s harard prowdant
rbe e foremrOmg T
- CBTTA Jat e k™ ;
e T - and Drane 3 hamiiiis - will 1 l“‘gdmcl‘\‘lﬂ' 12
m—— B R et
aw .__\r,;n' [Hl" - -

—— T

" » l ‘ mchadmg nstruction fewh, d=ode,

. :" . .
e seal for —verlaoped execution or. alinear
.+ e sdeal for cverlas

. ” F
T"‘""‘m smstruction Processing sl ! seprctzd 2 Fig- 6.9. The feich stage (
g e F‘“‘:‘"‘f‘: dmodt‘:r:g! D) reveas the jastruction

- . troe w oot Pt ®© i
TLIRE EETTAT Y0NS TIRS & amm-‘ TR - -"& y l
s .ﬁmcﬁ mlLd‘ gﬂ'ﬂll]-Ple‘J“ rcul-S‘CIs.
— g Th: st are alw read Tom ngl:“:‘

-e stages zre ShoWI in
i EnStrectons Srr CXECESC & p— H—T"—';Z);E“ 'ﬂ&‘_l:kmiry Joad o stcre
Fg t% The laft wrachach SopY W) s u;:.. I ::::;;—-; il ofumxg#hinlse insmmti:.\:'ls{‘lmllgh %
opemss e w7 S K N o of i ighlevel BORUAEE SE T
eypecal pepelans. Thear cight WEC - ; « ¢ take four execut:on clozk
Xey-Zanth=br - m:usumﬁuwz;:m”:ms
cwcacs mwwnnﬂ—w.mm -

' 1 ’-thmoﬁuG&Cmccssor.lnmanlesc
purh:u&m :yusnu:hc mmmml:ﬁﬂmﬁ,ll f:)'dcsfoxalaarl.ap'c'a
Soating -pous: asfiuon ok S5 With m-order insTuctios ssung. if 28 IFTACI0D is blocked from i3su:ng
mmuuunrmrumdna: il meTuclons ln:a-rm‘nnbiockx_

Figure € St iligsmates the 158U of insruruons folivwing We onginel progrim JICeT. The shaZed boxes
comespont 15 iie CyCies Wier IDSWUCUOE ISSuSS & nmuldumm;mhwncycrmnﬂic:s or due to
Gats depentences The first two load mswections issue vn consecutive cycles. The add is depend=n: an bath
ioads and mus wey three Cycles befiore the date (Y end 7) ase loaded .

S cmilarty, the svove of the SUI 10 memory location X st weat Gree cycles for the eda 16 fins=duc 1 a
fiow dependenoe. There a1z siamiler blockeges danng the caloulation of A. The total tirme requirzd is 17 clock

cycles. This tume is messared JCEIIDE = cycle & when fhe first instruction starts execution amtil cycle 20

LT r— o
1

then the lagt | 4
.qlnnup.. or Tatrix 04

Fi;\,m 4

y Starty ;
dracring” dlays execition, Thyy

l!l'nln' LrT—
9 shewy an g 1% elimimat hm.ﬂ&

i mproved. (imi et of the e, ¥
el wn ,,,:,u:‘m due g dependence 08 afler he 2

change the end ramlry Th:‘ 7 blocked fewey ..

[N o—
S— E " Saew —

() A nay von-stacgm err ,«_,,‘_“"' L : .

| T L]

-

Time

RY o Mem(Y)

R2 — Mem(z)

R3 — (R1) + (R2)
Mem(x) — (R3)

R4 + Mem(B)

RS~ Mem(C)

FB ~ (R4)'(RS)
Fem(A] — (R6)

R1¢ Mem(Y)
R2 & Mem(Z)
R4 « Mem(B)
RS & Mem(C)
R3 « (R11+R2)
R6 « (R4)'(RS)
Mem({x) « (R3)
Mam(A) « (RE)

[

}' v - . .
& Example 6.4 The MIPS R4000 instruction plpelme

i i jon and data s =4
Tte MIPS R4CCD was 2 pipelined 64-bit processor using separate mstructcd

ste PF 1ne 1 1 i ig. & 0, the sl
i ! \ i l'im.\S. AS ﬂtusmwd m E!g. 1 :

design was targeted to achieve an execution rate spproaching

-5..‘. L4 B T .

-
B |

l —‘——-—-—-_‘_ -
=
El
té . s, Advanced Computer Architecture
ik O IS RF EX ! DOF | DS ! TC : w8 !
- - : : : : : —
- ! Instruction : ' DF: Data first IS: Instruction second| !
&, ; :f;{'; L o DS: Data second RF: Register file !
5 i tag check EX Execution TC: Tag check E
5 Instruction J v IF: Instruction first WB: Write back i
e 0 address . 2 *]] ' 1 l\
b~ ! translation Instruct:on ' ' ' ' '
: : decode : , h \ H
3 : | Read ' ' \ : '
B : : iregister—» ALU L, [D-cache : N \
1 : ; C e Eaaerat\om: access) { Data tag E Write to E
2 ' E ' :] Data . Y check ! register !
1 ; H : ' . address 4 \ !
; : ; 3 : : : : ;
. ' mm}-l—m 5 : ; :
2 E ' | ' ' ' U ' Register
' v pster | ‘oo 1 H
: L oy > AL |- Dcache |— file
- >
3 (F [S TRF|EXTDF DS G WS
-' .
Pipeine FI BRI :
ey EAFILE - PEPHRENE
F‘
F
: ; . - summarized in Fig. 6.10a. Each
F The execution of each R4000 instruction consisted of eight IR0 MEPS A8 mfF‘g‘ 6 lt split
'E of these steps required approximately one clock cycle. The instruction and data memory reherencis i
T 2cross two stages. The single-cycle ALU stage took slightly more n,me than each of the mc .: 1-“ emct‘i
¢ The overlapped execution of successive instructions is shown in Fig. 6.10b. This P'pe.mes ofe ister
i efficiently because differeat CPU resources, such as zddress zu_xd bus'access, ALU operations, reg
? accesses, and so on, were utilized simultaneously on 2 noninterfering basis. i ek
: 7 ipput or m
E The intemnal pipeline clock rate (100 MHz) of the R4000 was twice the external ipput or !
?
f

:
|

Pipehining ond Superscalor Techniques e 241

frequency. Figure 6.10b shows the aptimal pipeline movement, campleting nne instruction every intenal
clock cycle. Load and branch instructions introduce extra delays

Q&.’J.I/ Mechanisms for Instruction Pipelining_—~

We introduce instruction buffers and describe the use of cacheing, collision avoidance, multiple functiona!
units, register tagging, and internal forwarding to smooth pipelinc flow and to remove bottlenecks and
unnecessary memory access operations.

—_ it}

Prefetch Buffers Three types of buffers can be used to malch the instruction fetch rate to the pipeline
consumption rate. [n one memory-access time, a block of consecutive instructions are fe:chﬂwh
buffer as illustrated in Fig. 6.11. The block access can be achieved using interleaved memory modules or

using a cache to shorten the effective memory-access time as demonstrated in the MIPS R4000.

Sequential instructions indicaled by program counter

T Seq. Buffer 1
% Seq. Buffer 2

Fetch ¥ |
Unit

Memory|— L sen SR

Instruction Pipeline

Targel Buffer 1

/, Target Bufler 2

Instructions from branched locations

Biffers:
o= o

=

Sequential instructions are loaded into a pair of sequential buffers for in-sequence pipelining. Instructions
from a branch target are loaded into a pair of targe? buffers for out-of-sequence pipelining. Both buffers
operate in a first-in-first-out fashion. These buffers become part of the pipeline as additional stages.

A conditional branch instruction causes both sequential buffers and target buffers to fill with instructions.
After the branch condition is checked, appropriate instructions are taken from one of the rwo buffers. and
instructions in the other buffer are discarded. Within each parr, one can usc one buffer to load insoructons
from memory and use another buffer to feed instructions into the pipeline. The two buffers in sach pair
alternate to prevent a collision between instructions flowing into and out of the pipeline.

A third type of prefetch buffer is known as a loap buffer. This buffer holds sequential instructions contained
in a small loop. The loop buffers are maintained by the fetch stage of the pipeline. Prefetched instuctions ia
the loop body will be executed repeatedly until all iterations complete execution. The loop buffer operates in
two steps. First, it contains instructions sequentially ahead of the currnt instruction. This saves the instruction
fetch time from memory. Second, it recognizes when the target of a branch falls within the loop boundary. In
this case, unnecessary memory accesses can be avoided if the targzt instruction ts already in the loop buier.
The CDC 6600 and Cray | made use of loop buffers.

Multiple Functional Units Somctimes a certain pipelinc stage becomes the boutleneck. This stage
corresponds to the row with the maximum number of checkmarks in the reservation table. This bottleneck
problem can be alleviated by using multiple copies of the same stage simultaneously. This leads to the usz of
multiple execution units in a pipelined processor design (Fig. 6.12).

1 s AT e b

T —

N i v e R T A e T VAR e R e

. il el ¢ M 4
Al].’L‘{-'.ﬁll‘J LMuls

o r;.a:mmmﬂh. 40

N Advarewd Commn A imeTane
ImEtruchan orn Memdny
|
l 1 Regiawe
. ' Fiwe
instncsan Ferch Ut | | i
o 1 B - o :
) — ;
__4_,.__‘ *:.l: |—= Decode and fssue Units — ‘
v e ' A] E]
M . L I
J o — 1 _—— QLeasaweac
NN SS———
P — e . 1 7'{_}
2 RHOWY | RS | &8 RS
Stwanons < .] '—L—\‘ :
= —t . X - i
i L‘.‘ “"'—"
| Funmone | =T FU lews! AU | i -
Bl - Mem
|

So- 2 peneliped scalar processor conlaining multip]; t'm:cnoc:li] uurnts
oo among the successive instruczions entenng h.e

ations wait in the RS un:il
hich is mertitorzd by

Sokbas { 1 990) used 2 model archaschae for
(Fig. 6.12). Iz order © resolve dal or rosourcs Sopendondes amo ; :
pipeime, the meserwarion siamiors | 2re used w “:.l.‘_""mmonlll-ml- Opeman :
their cats dependences beve bess resolved Each RS s cmguely identified by a fag, ¥

RS)

a :op@ s

b osed registers or RSs. This register tagging

The g wmxt kosps chrecking e mps Som =il co==i P R S L
m‘;{bus the herdwere 1o resolve conihcs Dowssm SOTTE and dcsunaton.reglfiery a_s1gn ==
multiple ie incrucsors Besides resohving cooficrs, te RSs 2lso s=ve 28 buffers to inter-ace thz pip2in
= . meiole functional units operate in pamllel, once the

ﬁmﬂmﬂmuﬁmmmﬁmszxﬁ: c i -
depeadencess erc resolves This sllevises the bomi=neck in the cxemion SAZES of the instrucmon pipelire.

Internal Dato Forwarding The througiou of 2 pipekined processor can be further improv?d vf':r.b m:em]:
jars forwzréims among muluple fmctoo imins 1= some cases, SOme MEMOry-access Jperal.ons can.he
f—;:a.:d by register sansies opemstions. The ides is descrided i Fig. 6.13.

- i iz Fiz 6.132 in which the load operation (LD R2, M. Erom.memc-:v
. s {MOVE B2, R1) from register RL to register RZ.
reduce memory trafic and
) el:miates the sezand

A siore-load forwording 15 ShOWE ‘
regisier R2 can be replaced by the move OperEuoz |) T
;.inccrmsmr mensfer 1= fgﬂammorymmsmforwndmgmﬂ .
s eosults in = shorter execution time. Similarty, load-load forwarding (Fig. 6.13b

LU TR T b

Fpehning ol S-P‘ncnlru “relnlquag

wad operatior, (LD Rz, M) and replaces it with the move o

.
crerand forvarding woll b continued in Chapter 12 Peration (MOv, R2, Ry ¢ b ? W F
. 4 Um:n di

M
S
"o (EaET= R1 R2 Acces; *
= PTG ¢ Uea | -

P2 :

STOM,R1 _DR2 M STO M, R1 MO R2, R1
(a) Siore-load forwarding

b |
Example 6.5 Implementing the dot- ’

15
P OdUCt operat'lqn =

internal data forwarding p
unit and an add unit € Detween Muty,

L e %
- One can feed the output of a multiplier directly to the input of an adder (Fig_ 6 |
L - 8.14) for iy

following dot-product opsration:

n
5= Zaf x b
i=]

_Wﬁh out internal Qﬂtﬂ fo;_va:din_g between the two functional units, the three
sequentially executed in a looping structure (Fig. 6.14a). With data forwarding, the g -
fed directly:into tae input register R4 of the adder (Fig. 6:14b).\At the same time, the m::_
is al s0 FC'FL"-F‘ to register R3. Internal data forwarding between the two f\mc\ioua'l s thas e T
execution tirne through the pipelined processor. il

Hazard Avpidaace The read and write of shared variables by different instructions
10.differerbresuls if these instructions are executéd out of order. As illustrated in Fig, 5.15,
jiogic ‘hazards ar= possible.

Consider twe instructions I and J. Instruction J is assumed to logically follow instruction | s
ogram crder. -7 the actual execution order of these two instructions violates the progrem
resul:s may be r=ad or written, thereby producing hazards.
Hazards shou.d be prevented before these instructions enter the pipeline, such as by hold
il the cependence on instruction 1 is resolved. We use the notation D(T) and R(T) for the conzr==
n instruction [.

‘Fhie-¢omain cortains the input ser (such as operands in registers or in memory)
The ranee corr2sponds to the output set of instruction I. Listed below are conditions un

emory) to be used 5 =5

der whia &

ards caa occur:

| —_‘..——'—"_
o .
&5
a3 i >
N % Advonced Computer Architecture Fipelining ond Superscolor Techniques ,“;;- 247
L. |
on E-" 246

R(N M D(J) # ¢ for RAW hazard
R(D N R() # ¢ for WAW hazard
D(N) n R(J) # ¢ for WAR hazard

(6.11)

These conditions are necessary but not sufficient. This means the hazard may not appear even if one or more
of the conditions exist. The RAW hazard corresponds to the flow dependence, WAR to the antidependence,
and WAW to the output dependence introduced in Section 2.1. The occurrence of a logic hazard depends on

the order i ich the two instructions are executed. Chapter |2 discusses techniques to handle such hazards.
% ~uchey i

@ WW C (&\/gk HS’OA L& ! "‘;S

n this section, we describe three methods for scheduling instructions through an instruc:ion pipeline. The

static scheduling scheme is supported by an optimizing compiler, Dynamic scheduling is achieved using a

technique such as Tomasulo's register-tagging scheme built in the IBM 36091, or the scorehoarding scheme
built in the CDC 6600 processor, -

'R3 « (R1)*(R2)
R4 « (R3)
1 R5 « (R5) + (R4)

3. amic Instruction Scheduling

Static Scheduling Data dependences in a sequence of instructions create interlocked relationships among

ibem, InterlocKing can b resolved through a compiler-based static scheduling approach. A compiler or a
-?&usrprocessor can be used to increase the separation hetween interlocked Instructions

Iy:R3 « (R1)* (R2)
I : R4 « (R1)* (R2) £
I3 : R5 « (R4} + (RS)

Consider the execution of the following code fragment. The muttiply instruction cannot be initiated until

the prec&ding load 1s coraplete. This data dependence will stall the pipeline Tor three clock cycles since the
two loads overlap by one cycle. .

13 and I3 can be executed

simultaneously with internal Instruction: R S
data forwarding. Add RO, RI g
Move RI, RS ‘ﬂ]
Load R2, M(a) 5
Load R3, M(f) B d
Multiply R2,R3]

The two loads, since they are independent of the add and move, can be moved ahezd to increase the
spacing between them and the multiply instruction. The fo[lowing program is obtained after this modification:

Load R2, M(@)

Load R3,M ()
Add RO, R1
Move Rl RS

Multiply R2,R3

Through this code rearrangement, the data dependences and
jt. multiply can be initiated without dela
gisters R2 and R3, the two instruc
Voided,

progran) semantics are preserved, and the
y. While the operands are being loaded from memory cells a and § into
tions add and move consume three cycles and thus pipeline stalling is

T ARSI TR T et

LN ERR TR 1) SR TR i e

Acvonced Computer Architeaure

g4 —

. . jilers if azeced,
(o sumlar 1@ that used for software interlocking NQPs cer. be i han 0.6, hat
The technique 1 ST) & 202 uno the delay slot1s greater thatt 55 =

2 in Fig .
Jhabil 4ne one instruction (d=4< w g, o - e s (a=4m
The pr\,babmn Gl £.200) 1s about 0.2, and that ot moving three instructiors (6
i $

Pipelining techniques can be applied

of moving TWO {netructions (d =311 Fig. to speed up numerical arithmetic cor,

Fig 6200 s less than 0.1, according o some program trace vesults with A Teview of anithmetic principles and standards. Then we consider Pulations y,
with fixed functions. nSider anthmers,
i

A fixea-pont multiply pipeli i ing-poi
i : pipeline design and the MC68040 floating-point unj
i lustzate the desizn techniques involve It are used 4

g jon i
") H on intca Ct) e
C_] Examp\e 6.8 A dela‘led branch with code moti 2nMEIC raCessor as an example. — M he).
delay slot b , orod MRt T
A T T TR 541 Computer Arithmetic Principles (o P ?-f“-,-‘ &
3 . s modified by moving the useful irstraction 1n a digitel computer, arithmetic is performed with finite p

E . ; : recision due to the use of fixed-s;
or registers. Fixed-point or integer arithmetic offers a fixed range of numbers that m?: T 3

4. A multifunction arithmetic pipeline is studiaq ‘lhtm-;;’
Wil =

Code mouon across branches canbe used to achi ‘ .
execution of 2 code fragment 10 Fig. §21a The onginal program

2 i e afier the branch non 13- <loali ; 3 : . = .
I3 imto the delsy slot 2l the branch msTuchan 12 Zloating->0iat ar."ametic operates Over a much increased dynamic range of numbers i BN
: '. [n modera ProSessors, fixed-point and floating-point arithmetic operations are v;r. .
SRR b D ST E ;ep:rate hardware on the same processor chip. ——2 ¥ OTten pering
3. LoaD F . d o Gl o i] o
N O 1 BiZew 22,15 . f“_"e Eﬂ:cm__sm_n implies that quqbem cxgeedmg the limit must be truncated or rounded 4 .
- Det /3.1 o precision within ‘he number of significant bits allowed. In the case of floating-point nurmbe S
—p 82w RLE n. led R the eXponert range means crror conditions, called. overflow or underflow. The Instiml: ;1' E .,
| | @ ass 20 3 14. Add R2, R4 Electronics Enginzers (IEEE) has developed standard formats for 32- and 64-bit floating ruzh <ol o
| ; | - e I RS, RE the JEEE 754 Standard. This standard has been adopted for most of today’s computers .
| H — % ' c
5. Swe RSB 5. Store P53 fixed-Point Operations Fixed-point numbers are represented internally in machines it sge-ngpes

one's comelement OT tWo S M o5t comput: P
; ¢ s complewment, Of w0 . puters use the two's complement notzs
of it§ Tm-coe Tepresentation of all numbers (including Zero). One’s complement notation introdzs =
zerofTep-eseatat.an Called dirty zero. s
Add, sabrrec!, mu!tr:pfy and divide are the four primiti i i :
A) ur primitive arithmetic operations. For fixed-pa:
ths add oc subtract of two n-bit integers (or fractions) produces an n ! oo

The omiltplication of two n-bit nurnbers produces-a 2n
wards de two registers to hold the full-precision result.

- The div_‘.s'c-n,:rf an n-bit number by-another may create an arbitrarily long quoticnt and a reme=ic
m appmmnate't‘esult is expected in fixed-point division with rounding or tuncation. Howeve, 2t
‘expand-the precision by using a 2n-bit dividend and an »-bit divisor to yield an n-bit quotient
ﬂo;“;ﬂfw A floating-point number X is represented by a pair (7. ¢), wheremis =
{or 'c.twn);?nd < 15 the exponent with.an implied base (or radix). The algebraic value i§ represeted ©
mxr, Thesige of X can be embedded in the mantissa.

(o) Moving useful instructions inlo the qday siot

-bit result with at most ope cxmz

In czse toe pranch is DOt zken, the execunon of the modified prograD produ-:z‘s the same rc‘su!'.s as‘the
originel program- 1o case the brench is 12ken in the modified program, execation of the delayed instructions
1 zndlsum:dudanyway, . o <.

In general, dx12 dependence betweeh ipstructions moOving across {he brznch and the remaians insuctons
being scheduled must be znalyzed. Since mstuction [1 is independent of ths remeining instructions, leavitg
it in the delzy slot will pot create logic pazards or data dependences.

-bit result which requires the use of e=

| Sometimes NOP fillers can e inseried in the delay slot if no useful insTuctions can be found. How2ven,
" inserting NOP fillers does Dot seve 22Y cycles in-the delayed 'brat_m'n oper?.liun. P_mm ?hc _a':sove p_n:qujﬂi

one can conclude (hat delzyed branching M be more effective in shor. instruction pipelinzs with about
four stages. Delayed branchiog has been buill into some RISC processors, including th MIPS R4000 anc

?
Motorols MCBBI10. (7 7/ Example 6.9 The IEEE 754 floating-point standard

-kl Boscing-point number is specified in the IEEE 754 Standard as folows:

;
4

o

Gcod G st N

Advenced Compurer Architecyre
0 1 2 8 9 "

(IIT—TT1T -

T — —_—
Sign Exponent e Manlissa m

A binary base is assumed with r = 2. The 8-bit exponent e field uses an excess-/27 code. The dynamc
nagotel 1, U 'mtemal.ly repl:escmeq s So.' 223 The sign 5 and the 23-bit mantissa field form
2 25.bil sign-maguitude fraction, including an implicit or “hidden” 1 bit to the left of the binary point” Thus
he complete mantissa actually represents the value 1.m in binary,

This hidden bit is not stored with the number. If 0 < e <255, then a nonzero normalized number represents
the following algebraic value:

X=(1yx 27" x (1.m) (6.15)

Wheo e = 255 and m # 0, a not-a-number (NaN) is represented. NaNs can be caused by dividing a zero by
a zero or taking the square root of a negative number, among many other nondeterminate cases. When ¢ = 255
and m =0, an infinite number X = (- 1)’ o is represented. Note that +eo and —co are represented differently

When e = 0 and m # 0, the number represented is X'= (=1)°27"2%(0.m). When e = 0 and m = 0, a zero is
represented as X' = (~1)°0. Again, +0 and - 0 are possible.

The 64-bit (double-precision) floating point can be defined simlarly .using an excess-1023 code in the
exponent field and a 52-bit mantissa field. A number which is nonzero, finite, non-NaN, and normalized, has

wing value:

the following et i B 1) | i

Special rules are given in the standard to handle overflow or underflow conditions. Interested readers may
check the published TEEE standards for details.

Floating-Point Operations The four primitive arithmetic openﬁons'an? defined below for a pair of
floating-point numbers represented by X = (m,, e,) and ¥ = (m,, g). For clarity, we assume & £ ¢, and base

r=2.

X+Y =(m1x2“""+ my)xxf’ (Zlg

3 8).

X-Y =(mx 2= m)xs” iew)l'
- 2;.-" ey ¥

XKY = lmxmg ¥ (6.20)

X+Y =(m+m)x 2 .

i i jons i i ting-point
The above equations clearly identify the number of arithmetic operations involved in each fioating-p

i - i t operations such as
i i ivi halves: One half is for exponent ope! |
s i by ¢ other half is for mantissa operations,

comparing their relative magnitudes or aflding/subnacting them; th
including four types of fixed-point operstiont o halves of the operations demand

-y T .

Floating-point units are ideal for pipelined mg\cmentatnon._The e i s ==
.almost twice as much hardware as that required io ﬁx.cd-pm::l ;;:la,dded eseicife

needed for cqualizing the two exponents before their mantissas © po e Pla‘?es

Iso requies left shifts

ighti x2*
Shifting a binary fraction rrto the right k places c(.)ﬂc.SPODdS tg lh:. wflgol:::]:;;bﬂ a
10 the lelt corresponds to m X 2% In addition, normalization of a floating-p

10 be performed.

A o e b e e PR

Pipelining ond Superscalar Techniques ey oy

Elementary Functions Elementary unctions include trigonometric, exponcnlial, logarithmic, and other
transcendental funclions. Truncated polynomials or power series can he uscd to cvaluate the clementary

functions, such as sin x, In x, e", cosh v. tan™ 3. Jfx, x', eic. Interested readers may refer 1o the book by
Hwang (1979) for details of computer arithmetic functions and their hardware implementation. ‘

It should be noted that computer arithmetic can be implemented by hardwired logic cizcuitry as well as by

table lookup using fast memory. Frequently used constants and special fimction values can also be generated
by table lookup. i

6.4.2 Static Arithmetic Pipelines

Most of today's arithmetic pipelines ar¢ designed to perform fixed functions. These aritkmetic/logic units
(ALUs) perform fixed-point and floating-point operations separately. The fixcd-point unit is also called the
integer unit. The floating-point unit can be built cither as part of the central processor or on a separate
COpFOCESSOT.

These arithmetic units perform scalar operations involving one pair of operands at a tinze. The pipelining
in scalar arithmetic pipelines is controlled by software loops. Vector arithmetic units can be designed with
pipeline hardware directly under firmware or hardwired control.

Scalar and vector arithmetic pipelines differ mainly in the arcas of register files and coatrol mechanisms
involved. Vector hardware pipelines are often built as add-on options to a scalar processor or as an attached
processor driven by a control processor. Both scalar and vector processors are used in modemn supercomputers.

Arithmetic Pipeline Stages Depending on the function to be implemented, different pipeline stages in
an arithmetic unit require different hardware logic. Since all arithmetic operations (such as ade!, subract,
multiply, divide, squaring, square rooting, logarithm, etc.) can be implernented with the basic add and shifting
operations, the core arithmetic stages require some form of hardware to add and to shift

For example, a typical three-stage floating-point adder includes a first stage for exponcnt comparison and
equalization which is implemented with an integer adder and some shifting logic; a second stage for fraction
addition using a high-speed carry lookahead adder; and a third stage for fraction normalization and exponent
readjustment using a shifter and another addition logic.

Arithmetic or logical shifts can be casily implemented with shift registers. High-speed addition requires
either the use of a carry-propagation adder (CPA) which adds two numbers and produces an arithmetic sum
as shown in Fig. 6.22a, or the use of a carry-save adder (CSA) to “add" three input numbers and produce onc
sum output and a carry output as exemplified in Fig. 6.22b.

In a CPA, the carries generated in successive digits arc allowed to propagate from the low end to the high
end, using either ripple carry propagation or some carry looka-head technique.

In a CSA, the carries are not allowed to propagalc but instead are saved in a carry vector. In general, an
n-bit CSA is specified as follows: Let X, Y, and Z be three -bit input numbers, expressed as X = (Xpy. Xp-0-
x,, xp) and so on. The CSA performs bitwise operations simultaneously on all columns of digits ta produce
two n-bit output numbers, denoted as 5* = (0, S,_,, Sp.2. -, S, So) and C = (C,,, Coey, - 1, 0):

Note that the leading bit of the binwise sum §° is always a 0, and the tail bit of the carry vector C is always

. 20. The input-output relationships are expressed below:

Si=x, By, @z

21
Ciy =xiyivVyaivex (6.21)

o — et s

J

AL 2 ATy

e.g. n=4
A= 1011
B

s=100\0=A'

Count

) Competer Arcrazcase

(Sum)

i which allows ethef camy
An n-bit cavry-propagale adder (CPA)
n propagation of applies he carry-lookahead technique

e.g.0=4

%= 001011
y= 010101
® 1= 111101

——

O in
b=0100011
+)c=un1o1o
s=1ou1n=s"+c=x+~r+z

c
(Camy
veclor)

(Bkwmise
a.m)

: bis the bitwise sum f X Y,and 2. and
b An n-bit carry-save adder (CSA),where §"is the bitw v LY
L Cls a carry veclor generated without carry propagation petween d g1t
v,

fori=0,1,2,...0= 1, where @ is the exclusi

¢ OR and v is the logical OR operation. Note that the anoumets

. & - .
sum of three input numbers, i.¢., 5= X+ Y+ Z, is obtained by adding the rwo output numbery, 12, § . §
C, using a CPA. We use the CPA and CSAs to implement the p:npcl'mc suages of & fined-powni pucluply unit

as follows.

Muitiply Pipeline Design Consider as an ex
where P is the 16-bit product. This fixed-point multiphicat
products as shown below: P=AxB=Po+ Pyt Py + ot Py, Where X
operations, respectively.

1

ample the multiplication of swo 8-tit integers £ % 8 = 7,
{on can be written as the surumation of eighl panal

and + are aritbmetic muloply 23d acd

0 L= 4

T —
OGOGG

0L 10l
1 o 0o Vv 0 O
[V R U S I
01 v 0 1 0
p 00 0 00
000 000
010100
o 00000
0 00 00 0
1 00 0 0 0

.—ac:-—-OQ

1 = Py
= P‘
= Pl

zPs
:P‘

0
1
¢
Q
0
0
0
h) = P,

0
0
0
0 = B
0
0
0

]
o

Fipelining and Superscalar Techniaues

e

Note that the partial product P, is oblained by muliplying the multiplicagg
cand 4

shiftng the result/ bits to the left for j = 01,2, .., 7. Thus P is (8 4 1y b by the g,
summa‘fmn-of the cight parnal products is done with o Wa!facejn-c, £) bit long wiy, h"' LT
shown in Fig. 6.23 OCCSAs plug gp, Mgy ¥
PhsaCpy, .ty
The first stage (_S \) geaerates all eight partial products, ranging fro ‘ Ry 8
second stage (S,_) is made up of two levels of four CSAs, and it ess;\n -B bits 10 15 big A
oumbers ranging &om 13 to L35 bits. The third stage (§,) consists of hllllly Merges h";l M.,
from. S, into two 16-bit numbers. The final stage (Sy) is a CPA, which d; CSAs, sog o 2
the final product P. ¢S up the |y m:"'ﬁﬂ
Minbe, 'J: B3
8 8
Th 3 E\
a i a i)
S ‘ Muiltiplier recoding logic £
8 49 {10 M {12413 i
_— —
8 19 110 11412413 +
CSA CSA
s2 100
_ C8A__/

S__CsA "
s3 Py~

‘
16
[3 ",
R
84
\ CPA i
16 |
Cagtions - .
CS8A = Carry save adder "
CPA = Carry Propagate adder PxAXB

-CSimc:nmbe imrum widch of 16 bits, the CPA is estimated to need four gate levels
i mw with 2 two-gate-level logic. The delay of the first s (§;) e
s all the pipeline stages have an approximately equal amount of delay.

of delay B2 ¥

E -;j 5 53“ Advanced Computer Architecture pipelining and superscolar Techniques -_
'J atching cf stage delays is crucial to the determination of the number of pipeline stages, as well a separate pipelines. The mantissa section can perform floating-point add or multiply operations, cither single-
{L s Thecl:: riod (Eg. 6:1).1f the delay of the CPA stage can be further reduced to match that of a single CSA precision (32 bits) or double-precision (64 bits).
o the domenplhe pipzline can be divided into six stages with a clock rate twice as fast. The basic concepts can In the mantissa section, stage | receives input opcrands and retums with computation resuits; 64-bit
| & mcl.l nded 10 operands with a larger number of bits, as we see in the example below. registers are used in this stage. Note that all three stages arc connecled to two 64-bit data buses. Stage 2
£ be extel contains the array multiplier (64 x 8) which must be repeatedly used to carry oul 3 long multiplication of the
i‘u two mantissas.
] I/, The 67-bit adder performs the addition/subtraction of two mantissas, the barrel shifter is used for
b Example 6.10 The floating-point unit in the Motorola normalization. Stage 3 contains registers for halding results hefore they are loaded into the register file in
F MC68040 stage | for subsequent use by oLhen;nstruclions.
E - ; On the exponent side, a 16-bit bus is used between stages. Stage | has an exponent adder for comparing
& Figure 6.24 shows the design of a pipelined floating-point unit built as an on-chip feature in the Motorola the relative magnitude of two exponents. The result of stage | is used to equalize the exponests before
- h;?;;:zo processor. mantissa addition can be performed. Therefore, a shift count (from the nutput of the exponent adder) is sent
F"l' Mantissa Exponent to the barrel shifter for mantissa alignment.
£ After normalization of the final result (getting rid of leading zeros), the exponent needs to be readjusted in
F stage 3 using another adder. The final value of the resulting exponcnt is fed from the register in stage 3 to the
E 16 register file in stage 1, ready for subsequent usage.
|3
B = Register Convergence Division One technique for division involves repeated multiplications. Mantissa division
B et 64 Incrementer is carried out by a convergence method. This convergence division obtains the quotient Q = M/D of two
v Stage 1 : normalized fractions 0.5 < M < D < | in two's complement notation by performing two sequences of chain
Register 3 multiplications as follows:

' MR Ry iR
£ 17 Q= 1 2 k (6.21)

' ! Registor file(8) Roﬁllzter —1 D x R % Rz- X% R,
| ” : where the successive multipliers
g 64-bil x E-bit s i-1 ;
| Muliplier l 4 ; Ri=1+6""=2-D" fori=1,2,...k and D=1-8
; ¥

The purpose is to choose R; such that the denominator PP =DxR xRyx - xR, — | forasufficient
number of k iterations, and then the resulting numerator M x R, x Ry x -+ X R, = Q.
Note that the multiplier R; can be obtained by finding the two's coraplement of the previous chain product

E 16746 2

”“ Stage 2 _
E ’ 67-bit Add Unit :

”' DV =DxRyx-XRy=1- 5% because 2 - D = R,. The reason why D™ — 1 for large k is that
i BBl DO=(1-8)(1+ (1 + F)1+ 8 - (1 + 8T
shifter
=(1- &% -
P (1-8 _)_(1+52)u+a‘) (1+87
g , Reglster =(1-8) fori=1,2....k (6.23)
“k Ye1.4 67 Incrementar Singc 0<éd=1-D<50.S5, 8% 5 0 as i becomes sufficiently large, say, i = k for some k; thus p¥ =
}. Stage 3 64 I - 8% = | for large k. The end result is
e O=Mx(1+8)x(1+8)x- x(|+62H) (6.24)

The above two sequences of chain multiplications are carried out alternately between the numerator and
dcno.mmalor through the pipeline stages. To summarize, in this technique division is camied out by repeated
multiplications. Thus divide and multiply can share the same hardware pipeline.

? This arithmetic pipeline has three stages. The mantissa section and exponent section are c'ssentlally two

P AT L1 N jB . PLEN R R ba e B T S g

= e ks S+ - — “-_
- S o - Fipeliming ond Superscakar Fechn'ques

_ Architecore : L,

CornauE! T %3 i "ty
adranced & 351 This resource-shared muluple-pw.pehnf. structure 1S illustrated by a design x %
s L \bis design, the processor can issue two instructions per cycle if there is 0o regq “mple i i 7

ZeAixB e T o ated suDS depencence groblem. There arz essentially two pipelines in the design. Both pipﬁ?mc 5 \arﬁ u

e puffers, and the 8¢ stages labeled fetch, decode, execute, and store, respectively. TS have fo, .

h the X- and 1-

where the successive operunds (o B;) were fed throug From %
through the Z-buffer recursively. o sl - OUB! s
= .3 single D-cache
The entire pipeline could peiform the multiply (X) and the add f(+) :mn st0 the PA E:laculg
nwo levels of buffer registers isulated the loading and fewching © op Fig 611 i ! Muﬁ‘,’:.., . i
as in the concept of using & pair in the prefech buffers deseribed in P18 i sign [o7 K pasagg ' .
.) . clem ptowdcda od Ferch . Decode . i v '
Even though the TI-ASC is no longer in production, the sysiem i ipeli.nts th deat stage | stage | m2 | m3 (mtm :
arithmetic pipelines. Today, most supercomputers implement arithmetic P § Sl H a1 FP ! eback) |
for much simpliﬁ satrol circuitry and faster operations. H : : - :
. 40 From l-cache i ! al | a2 . S1 ;
I \ ! . . : :
e g AP =) I e e Logic . ‘
% @;—. & -5%@1‘_;&@@%;@3 L ot 1 '. S @ , : 2:
L e scaler B3 pro=e I :
Pipeline Design Parameters Some parameters uscdf in ;“li':l‘;:;;cmoﬁ - be sucied o P 1T = I $2 : _"
. , Jarized in Table 6.1 10 cPpr / 1 - \ ' £
. sugcm@gw syt Lookahead Window . a2 ' ;
_ : it called th2 B2 " y ' ;
d wsor 15 assumed 10 be | time unit, ¢ e i ‘ |
The .orPL:! me tycle .or the sca ‘ar Ise pmcﬁsz " nple operation 'atency inSecuc-n4.1.l The instrict O (o) Aduebpipiling, sude scalar processor with four skl it i e senciion siscs |
defined the instruction issue rare, issue atency, and simple Op d - the Oroducing out-of-arder iSSUEs 90000 3 ooaness, "

g ! 3 " - usly gxecute
level parallelism (ILP) is the maximum number of instructions that c20 be simultaneoust.

pipehine. : o a]ative (. Load R1, A [Rie Memory (A} /

For the base processor, all of these parameters have 3 value of 1. -’f“ processor Y¢S are desizned 7 1 2. Add R2, R1 IR2Ze(R2)* R 'rb\

o the base processor. The ILP is needed to fully utilize a given pipeline processor o add R3, Re [R3c(RY+RN :
' ® ® 0

Myl R3. R5 [R4 (R4} (RS)!

Table 6.1 Design Parameters for Pipeline Processors
15 Comp R6 IR6 « (RB)/

E’rugtal norder
sy
-

@

/ =alar meching ¢ degre2m .
Superscalar A & Mul R6. RT [R6«(R6)"(RT) Flow ——
dependence dependence ’”‘;in_:f-q

. dependence
It) Asample program znd its dependence graph, where [2and 13 8
it p share the adder and 14 3nd 1§ ¢ae

Machine type

Machine pipeline cycle

Instruction issue rate

Instruction issue latency

Simple operation latency

LLP to fully utilize the pipeline’

Each pipeline essentially Eas its ovim*fetch unit, decode unit, and store unit. The two instuctor =
ﬂé\‘u_ms.t.lnuughllhc two pigd.inen are retrieved from a single source stream (the I-cache). The fwoa:
a singlz instruction stream is subject to resource constraints and a data dependence relationshy iy

E- successiveinstractions.

' i For simplicity, we assume that each pipeline stage requires one cycle, except the execuie st =
require & yariable number of cycles. Four functional units, multiplicr, adder, logic unit, and [0 =
afailable for use in the exectfe stage. These functional units are shared by the two pipeliaes mads
basis: The multplier i-self hes three pipeline stages, the adder has two stages, and the others b=
one stage ' '

Note: All timing is relative 10 {he base cycle for the scalar base machine, [LP: Instruction level paralle.lsm

We study below the structure of superscalar pipelines, the data dependence prcblem, the factors sausing
pipeline stalling, and multi-instruction iSsuing mechanisms for achieving parallel pipelining operations. For
a superscalar machine of degree m, m instructions are-issued per cycle and the ILP shou.d be m in reer e
fully utilize the pipeline. As a matter of fact, the scalar base processer can be considered a degenzrate zes¢ 2t

a superscalar processor of degree 1.
Super:calar__.PJ'pelin'e Structure In an m-issue superscalar processor, the instructicn decoc:ng and

execulion resources are increased to form effectively m pipelines operating concurently. At some pipeline
stages, the functional units may be shared by multiple pipelines. ;

v » . . B -ct——-.,. - —
- RGN 1 &1 i e i -
' A I st T Y G L — - * ’ - » %

' -.—%Ifz'.;? s

26;‘* Advonced Computer Architecture
The two store units (S and S2) can be dyx.mmically‘ us.ed by the two pipelines, depending on avaj bl
 a particular cycle. There is a lookahead window wznh its own fetch and decoding logic, This Win: ility
25 ,dpfor instruction lookahead in case out-of-order instruction issue is desired to achieve better pi:q:; is

ne
throughput: : i i
|t requires complex logic to schedule multiple pipelines simultaneously, especially when the instructions

e retrieved from the same source. The aim is to avoid pipeline stalling and minimize pipeline idle time

pata D ependences Consider thF example program in_Fig. 6.28b. A dependence graph is drawn to indicate
the relationship ameng the instructions. Because the register content in R1 is loaded by 11 and then used by
12, we have flow dependence: 11— 12

Because the result in register R4 after executing 14 may affect the operand register R4 used by [3, we have
satidepeadence: 13 +3 14. Since both 15 and I6 modify the register R6, and R6 supplies an operand for 16, we
nave both flow and output dependence: 15 — 16 and I5 &> 16 as shown in the dependence graph.

To schedule instructions through on¢ or more pipelines, these data dependences must not be violated,

Otherwise, ETONeous results may be produced.

This is a problem which may seriously lower pipeline wtilization. Proper scheduling
~voids pipeline salling. The problem exists in both scalar and superscalar processors. However, it is more
s ina superscalar pipeline. Stalling can be caused by data dependences or by resource conflicts among
ncructions already in the pipeline or about to enter the pipeline. We use an example Lo illustrate the conditions

Pipeline Stalling

causing pipeline stalling.

Consider the scheduling of two instruction pipelines in a two-issue superscalar processor. Figure 6.29a
shows the case of no data dependence on the left and flow dependence (I1 — 12) on the right. Without data
dependeace, all pipeline stages are utilized without idling.

With dependence, instruction 12 entering the second pipeline must wait for two cycles (shaded time slots)
before entering the execution stages. This delay may also pass to the next instruction 14 entering the pipeline.

In Fig. 6.29b, we show the effect of branching (instruction 12). A delay slot of four cycles results from a
branch taken by 12 at cycle 5. Therefore, both pipelines must be fushed before the target instructions I3 and
14 can enter the pipelines from cycle 6. Here, delayed branch or other amending actions are not taken.

In Fig. 6.29¢, we show 2 combined problem involving both resource conflict and data dependence.
[nstructions I1 and 12 need 1o use the same functional uait, and 12 — 14 exists. _

The net effect is that 12 must be scheduled one cycle behind because the two pipeline stages (¢, and e;) of
the same functional unit must be used by 11 and I2 in-an overlapped fashion. For the same reason, [3isalso
delayed by one cycle. Instruction [4 is delayed by two cycles due to the flow dependence on 12. The shaded

boxes in all the timing charts correspond to idle stages.

Supencélﬂr Pipeline Scheduling Instruction issue and completi - : i
processor performance. Three scheduling policies are introduced below. When instructions are 1SSucc !

program order, we call it in-order issue. When program order is violated, out-of-order issue s being practiced.

2 s 4 i ion.
Similarly, if the instructions must be completed in program ofder. it s called in-order cc:m;i:vel’;;lf:lge
Otherwise, our-of-order complefion may result. lo-order issue is easier to implement but may not ¥
optimal performance. In-order issue may result in either in-order or out-of-order completion.

on policies are critical to superscalar

Pipelining and Superscalor Techniques 2B 949

Time

2 4 5 6 1 2 3 4 5 6 T 8

% [AE Wr]d]®|®2]s

2 8] s I r]d YEIE s_}

2 1R A I [d[®]%]s

- e8| s L1 dk Te]e]s
L] .l

{No data dependence) (12 uses data generated by 1)

(a) Data dependence stalls the second pipeline in shaded cycles

1 2 3 4 5
I e, | e
g 1] d|®f®%2] s aplions
T d[eife]s C_QLQ-
6§ 7 8 9 10 1 f = fetch
I3 r[dles|e]s d = decode
Iq 1 dle1]®]s el = execute |
Is{ r{d|®& €25 e2 = execule 2
l{rld]eil8]s s = slore (wrieback)

{b) Branch instruction 12 causes a delay slot of length 4 in both pipelines

1 2 3 4 5 6 1 2 3 4 5 6 T 8
Wr]d]ei|®e2]s W[d]&]%2]s
g ldleifeals L{1]d HAE
Lir]ale|ez]s 3 t]d ey[e;] s
lgf £ | d]®1|®2 s} i la [N sl
- L]
- .

.
(11 and 12 conflict in using the same functional

(No resource confiicts)
unit. and 14 uses dala generated by 12)

(c) Resource conflicts and dala dependences cause tha stalling of
pipeline operations for some cycles

r
3350 T 8 Y TR
£ fabbpda e S e R L e o

LA

Out-of-order issue usually ends up with out-of-order completion. The purpose of out-of-order issuc
and completion is to improve performance. Thesc three scheduling policics are illustrated in Fig. 6.30 by
execution of the example program in Fig. 6.28b on the dual-pipeline hardware in Fig. 6.28a.

It is demonstrated that performance can be improved from an in-order to an out-of-order schedule. Th
performance is often indicated by the totzl execution time and the utilization rate of pipcline stages. Not all

programs can be scheduled out of order. Data dependence and resource conflicts do impose constraints

In-Order Issue Figure 6.30a shows a schedule for the six instructions being issucd in program order 11,
12, ..., 16. Pipeline 1 receives I1, 13, and I5, and pipeline 2 receives 12, 14, and 16 in three consccutive cycles
Due to 11 — 12, I2 has to wait one cycle to usc the data loaded in by [1.

13 is delayed one cycle for the same adder used by 12. 16 has to waiit for the result of IS before it can cater
the multiplier stages. In order to maintain in-order completion, 15 is forced to wait for two cycles to come oul
of pipeline 1. In total, nine cycles are needed and five idlc cycles (shaded boxcs) are observed.

————— s e m— .
= - p— - -~

e ——
N B s

\

Y

e

window Ino

270 —

1n Fig 6.30b, out
between this out-af-onjer ¢
14, which are rotally independent of
atlizalion rate does
Omly three dle cycles ate
rder 1o shorten the t

of-order comple

hedule and
14, The rotal exes

obuerved |

non 18

otal exevuty

allow’ ol eve!

the in-onder
4 non ne

4 Note that W rigs
on ame, the ™

Out-of-Order Issue

itisi

seven cyel

t of all
fetched and decoded by the window, wh

It is followed by 15
completion is also o
es with no i

Ppel.l;

ul O

o) '.W:ssialﬂou‘. ¢

AR

By using the lookzhead W
the other InstrUCLOLS. The
ile 13 and
le 2, and 12 a1 cycle 3, Becau
30¢. Now, the total execution time has been re

execution of these si instructions.

suing 16 2nd 11 at cyc
f order as shown

dle stages dunng the

indow, instructio
six i_nsuuctions are issued i tkree
14 are decoded concurrently.

se the issue is out of order, the
duced to

in Fig. 6

TR |

pipe 1Tz | e [N B osuz order

5 6. T

|

4
Pige 1 lﬂlr!l < [l 1; | completion orcer

tion in seven cycles using En Instruction

.l(nuruu chiec
A o
| snce
i eg The ml\ il
o aly i
_opdet 185U \ 2 i
q if in-ot allowes ¢ Cv P . ‘“Pd
cdule 18 that 13 e ol
Joes 0O r '
s e h\on:\l'cm
e he ! Jon 1881E%
ob, ‘

a IS can be dzzodzd in advance bacause
ycles as showr: 1§ is

Vi db s RN Rl S

Pipelining anc Supancalar echniques

The in-order issuc and completion is the simplest oge ¢
10 imp|
CMmen ;

¢mventianal scalar processor due to some unn
ecess ;
ary delays i m‘inmnh I8 1y, N

maltiprocessor snvironment, this policy is still attract; . el i
1 i ! H
both scalar aa¢ superscalar processors. e Allowing gy, _of:r! Pm%u:“ Y
. §eme lonz-latency operations, such as loads and floatin; = :“"’-mﬂzé"" oy 24
g . T N

' A i

compietion 10 achicve a better performance. Output d: "POINt Operatjgp Sy

prevanting out-of-order completion. Out-of-order i nCE ang gy, " 08 \
155ue SIWM & Dy, ek

parallzlism, ard thus pipeline cfficiency is enhanced C
The a>ove cxaf:lple clearly demonstrates the advantages of | S i
csue and completion as far as pipeline optimization is mnce;e;m““'“ ” N
It sh

scheduling is an NP-complete problem. Optimal scheduling is very ould b o, e
EXDERsive 1 R

Proces, » X
0 g
e e

Simple dzta depzndence checking, a small look ;
slong with an optimizing compiler.gl; exp;Jitl?:sL;\]::: dvindsw;eag score! .4%"3""‘ Ty
10n patallelism in 4 1

Motorola 88110 Architecture The Motorola 83110 was an ear]
the three-chopsset, one CPU (88100) chip and two cache (33200y)surmh”‘[*
Chips,

with additicndl iroprovements. The 88110 employed advanced DS, in %55;5 Pty
garzllelism, ircluding instruction issue, out-of-order 'msuucrigtn techniques gy o
jastruction rescheduling, and two on-chip caches. The unit nlwwmplctim Wi
signal processing zpplications. Supported d% Xy
. Th . :) Lo
¢ 88110 emp-oyeda symmetrical superscalar instruction dispatch un i
cachclock cycle into an array of 10 concurrent units. It allowed out-of: unit w.hnc'; G,
out-af-orde: icstruction issue, and branch prediction with 'speculative-:x“in%mm;"_
hﬂ.m% ¢

4

4

£

The instustion set of the 88110 extended that of the 88100 in inte
_ added a new__sct- of capabilities to support 3-D color graphics image md Boatng e
independent Fnstruction and data paths, along with split caches for immm;. T iy ;
cache was SK-byte, 2-way set-associative with 128 sets, two blocks for each = Ting,
 per zlock. The daca cache resembled that of the instruction set. SRy \;
Tae 83110.employed the MESI cache coherence protocol. A write-invalidar
ane processos-on the Pus had a modified copy of any cache block at any time Th:gﬁ:h
) R

e ~-with 1.3 million transistors in a 299-pin package and drivenb
y 2 50-MHz e
o Distendorff and Allen (1992) for details. clock Ity

Superscalar Performance To compare the relative performance of 2 superscaie s
scalar base machine, we estimate the ideal execution time of N independent insm:-j-h-:
—he tims required by the scalar base machine is ik

T(1,1)=k+N-1 (base cycles)

“The -deal execution time required by an m-issue superscalar machine is
N-
T(m, 1)=k+ —— (base cycles)
m
wheze'k is the time required to execute the first /n mstructions through the m pipeloss =

the secopd term corresponds to the time required to execute the remaining N - P 7
through m pipelines.

.._-a-""'"-_-_-‘ -~
324 COMPUTER ARCHITECTURE AND PARALLEL PROCESSING ‘
jI: 1 2 3 .4 s 6
“ x 8__1)
.‘l‘, x .
5 % .
Sy] 2 3 4 JA .] .
‘l X x s, . ")
b
:z . : ‘2 N]
‘) X " g I
(a) Reservation tables
fl | f; g fJ r—

Figare 444 The chalning of three pipelines In Problem e ' :

= Fahany
(a) whnt are lhc muim,ulq throughpuu [or thc j, lnd g, p:pelmes. mummg that thcy wor\;
completely independently on dne another? That is, assume that the two plpelmel work on. oomplelely "
independent data streams D, and D,. e
(%) In chaining, the output of one p:p-clmc is nppjwd dlmctly 1o tl\e mput ol‘ ;no;h.er _ptnehne
One can think of this as configuring the pipelines such that the optput latch or: bu.@'u ot the first pipeline
becomes the input latch or bul'st,of ihe mnﬂ,,m; iy gq_ :pq.qlmum throu;hput l'pr tasks in:D.ifithe
fl“d! f”, “‘M"AOM } tﬂ!m ’ O3 L !
4 &nmi can you ooncllidb. m MW of chlmjn'.plpelmu Ih,lt,hqyr. fgg:},:
b:ck? Conuder the cll'em on me-mory oonuntlon and the dcqund on mmory blndmdth As pqn.of
your ihlwcr b

4.10 Cons:dcr lhrgq fqnctlonqi plpcl;nc:fl.fa 4 :mdf, c.hn.nct.en:ped by lhe resc;uuoq Llhlu lq El;ug:
4.44a it
(a) Whnl are the m{nfmal autmqe !arencie.r in usmg the f, . f, , and f, plpelmes mdcpendcnt]y?
(b) What is the maximum throughput if three pipelines are chained into a linear cascade as shown
in Figure 4 4457

4.11 Show the timing diagrams for implementing,the two sequences of vector instructions (described in
Example 4.23) on the Cray-1 mlchme Venfx thf lolah:lock pcnodl requlrcd m, uch of lhqmo com-
puling sequences. £e ET I{_J

L I- -"'" , '{"‘: i i ' : iy fcl |1
i *] - 1
(- [e Lo - § Sl

oA

“mr—r-—-—.—--.—;- ey T g e g e e o

