Scanned with CamScanner

111 SEMESTER
Core Course- XI1I-17PCS09 OPEN SOURCE COMPUTING
Credits: 4
Course Objective:

e To understand the basic Concepts of Python
UNIT - 1
Python: Introduction — Numbers — Strings ~ Variables -~ Lists ~ Tuples — Dictionaries - Sets
Comparison,
UNIT - 11
Code Structures: if, elil, and else - Repeat with while ~ lterate with for — Comprehensions
Functions — Generators -~ Decorators — Namespaces and Scope -~ Handle Errors with try and except
User Exceptions,
Modules, Packages, and Programs: Standalone Programs -~ Command-Line Arguments - Modules
and the import Statement ~ The Python Standard Library, Objects and Classes: Deline a Class with
class — Inheritance — Override a Method ~ Add a Method —~ Get Help from Parent with super — In self
Defense — Get and Set Atribute Values with Properties -~ Name Mangling for Privacy -~ Method
Types — Duck Typing — Special Methods - Composition
UNIT-I11
Data Types: Text Strings — Binary Data, Storing and Retrieving Data: File InpuvOutput
Structured Text Files — Structured Binary Files - Relational Databases — NoSQL Data Stores,
UNIT-IV
Web: Web Clients — Web Servers — Web Services and Automation — Systems: Files - Directories -

Programs and Processes - Calendars and Clocks

UNIT-V

Concurrency: Queues — Processes — Threads — Green Threads and gevent — twisted — Redis,
Networks: Patterns — The Publish-Subscribe Model - TCP/IP - Sockets — ZeroMQ - Internet Services
- Web Services and APls — Remote Processing — Big Fat Data and MapReduce — Working in the
Clouds,

TEXT BOOK
1. Bill Lubanovic, “Introducing Python”, O'Reilly, First Edition-Second Release, 2014,

REFERENCE BOOKS
1. Mark Lutz, “Leaming Python™, O'Reilly, Fifth Edition, 2013,
David M. Beazley,"Python Essential Reference”, Developer’s Library, Fourth Edition, 2009,

Scanned with CamScanner

Scanned with CamScanner

111 SEMESTER
Core Course- XII-17PCS09 OPEN SOURCE COMPUTING
Credits: 4
Course Objective:

e To understand the basic Concepts of Python
UNIT - 1

Python: Introduction -~ Numbers -~ Strings -~ Varlables - Lists ~ Tuples -~ Dictionaries -~ Sets

Comparison,

Scanned with CamScanner

Scanned with CamScanner

n;ﬂ

P‘d i

By :@L...:A; .

|+ In this chapter we'll be gin by looking at Python’s simplest built-in data types: e

= booleans (which have the value\True or False) ’2‘ o3 oF ' &
ha® integers (whole nurmbers such as 42 00000000)

= floats (numbers with decimal points such as 3. 14159, or sometimes exponel
1.0e8, which mearas one times ten to the eighth power, or 190000000.)

= strings (sequences Of text characters)

m they're like ato ms. We'll use them individually in this chapter. Chapter 3 shows
' bine them antolarger “molecules”

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

The type also determines ifthe data value contained by the box can be changed (m

ble) OWM. Think of an immutable object as a closed box !
clear window: you can see the value but you can’t change it. By the same analogy, a

mutable object is like an open box: not only can you see the value inside, you can also
change it; however, you can’t change its type. 14 "

_Prython s strongly typed, which means that the type of an object does not change, even
~if its value is mutable (Figire 2-2).

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

1ed a, and then prints the value currentl y associated with a:
s> a="7

»>>> print(a)
7

Now, it’s time to make a crucial point about Pytlhon variables: variables are j
Assignment does not copy a value; it just attackzes 2 name to the object
the data. The name is a reference to a thing rather than the thing itself. Think ofa

‘asa sticky note (see Figure 2-3).

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ating point numbers (such as 3.1416, 1 4.9, and 1.87e4))You can calc
6f numbers with(the simple math operators in this table:)
Description Example Result
~ addition 5+8 13
multiplication
floating point division
integer (truncating) division

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

o

by zero with either kind of division causes a Python excepti

LR
& (most recent call last):
in>", line , in <module>
ionError: division by zero

‘most recent call last):
i ne |, in <module>

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

33> 3= 2%

>>> temp = 3 - ¢

>»> 3 = temp

So, when you say:

> 323 -3

Python is caleulating the subtraction on the righthand side, remembering the result,

and then assigning it to a on the left side of the = si s f r
™ o sign. Its f
i o g s laster and neater than using

You can combine the arithmeti : -
W C operators with assignment by putting the il
before the =. Here, a -= 3 is like sayinga = a - 3. Yy putting the operator
»3 g =

a5 g -7 4

SN @

L")
Thisislikea = 3 + &

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

you could have calculated them separately:

rcturns a two-item result called a tuple. Tuples will take a bow in
ions will make their debut in Chapter 4.

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

+oes (one of my cats hasa few more,
0, 1, 9. Next, we run oﬂﬁ
e o ane’ place: 10 means 1 ten
» and put a 0 in the one’s place: ol
"'i'thz:mgzesents “en” Then, it 11, 12, up to 19, carr}
tens and 0 ones), and so on. -

w many digits you can use until you need to “carry the one” In ba [

only digitsare 0 and 1. 0 is the same as a plain old decimal 0, anfl_l, 1s e
mal 1. However, in base 2, if youadd a 1 to a 1, you get 10 (1 decimal two

In Python, you can express literal integers in three bases besides decimal:

~+ Obor 6B for binary (base 2).
+ Bo or 80 for octal (base 8).
» @xor X for hex (base 16).
ﬂm interpreter prints these for you as decimal integers. Let’s try cach of these bases.
First, a plain old decimal 10, which means I ten and 0 ones:.
35> 10

inary (base two), which means 1 (decimal) two and 0 ones.

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ng decimal points or exponents:

=»> int('98.6')
Traceback (most recent call last):
File “estdin>", line 1, in <modules
ValueError: invalid literal for int() with base 18: '98.8'
>>> ipt('1l.0e4')
Traceback (most recent call last):
File "<stdin>", line 1, in <modules>
ValueError: invalid literal for int() with base 16: '1.Ges’

If you mix numeric types, Python will sometimes try to automatically convert them:

The boolean value False is treated as @ or 6.0 when mixed with integers or f

True is treated as 10r1.0: ,

>>»> True + 1
-

s>> False + +.6
5.0

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

>>> float(False)
C.8

E@ﬁ?\'&l‘tingan in_t't:ger to a float just makes it the proud possessor of a decimal

#>> float(3)

ert a string conta ining characterst :
, or an e followed by an exponent) to a real fl

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

} you can copy par 50 strmga lo another smng la ge: th
w to do this shortly.

Create with Quotes ! Y

mon string by enclosing characters in either single quotes
quotes,jas demonstrated in the following;
("‘.»:. 'Snap’
"Snap’
35 "trackle”
" Crackle®

The interactive interpreter echoes strings with a stugle quote, but all are tieated exact
the same by Python.

Why have twa kinds of quote characters? The main purpose is so tha

strings containing quote characters. You can have single quotes in,
strings, or double quotes inside single-quoafed strings:

3 “'Hay,' said the -na-y_ﬁayer."
-"'Nay, sald the naysayer.
»>> ‘The rare double quote in captivity'
ouble quote in THASS

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

_ which prom
the final triple quotes and went

cond line:

>>> poem = 'There was 2 young ladys of Norway,
File "<stdin>", line !
poem = 'There was & young ladyy of Morway,

A

SyntaxError: EOL while scanning string literal
555

If you have multiple lines within tripl e quotes, the line ending characters will be
served in the string. If you have leadin g or trailing spaces, they'll also be kept:

>>> poem2 = "''TI do not like thee . Doctor Fell.
ez The reason why, 1 cannot tell.
But this I know, and know Tull well:
I do not like thee. Roctor Fell
>>> print(poem2)
I do not like thee, Docter Fell.
The reason why, I cannot tell.
But this I know, and kpow fulL well:
1 do not like thee, Doctor FelLl.

*sa difference between theoutputofprint() and thez

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

= 553 "

_-m,
foes (IO AL
ol

URIR
g st

Whywould you need an empty string? Sometimes you might want to build a string from
other strings, and you need to start with 2 blank slate.

>>> hottles = o2

»>> base = '

>>> base += ‘current inventory:
> base += str(bottles)

>>> base

‘current inventory: 95°

Convert Data Types by Using str()
Gou can convert other Pytth strings by using the str() ﬁmcggnf

> str(%y)
'98.6'

sy gl (ont)
'106800.06'

52> str(True)
:srm_!,' :

s the str() function internally when you call print ()
i when doing string interpolation, which you'll see

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

tugl“ he said. "Not that either! Or the other thi
= "m world's large'st rubber duck was _54o2‘n by _&._

gest rubber duck was 54'7" by 65'7" by &'
f you need a literal backslash, just type'two-of them:
the backslash: \\.*

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ith [start : end :step |

i extract a substring (a part of a string) from a string by using a s
by using square brackets, a start offset, an endoffset, and an o

ne of these can be omitted. The slice will include characters from o,

fore end.

o [start : end] indicates from the stort otfset_to the end offset min

[start : end : step] extracts from the star ¢ offset to the en
characters by step. ' -

00, 1, and 5o on from the start to the
ft. If you don't specify start, the slice use
1ses the end of the string.

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

"f .

) from offset 18 to the fourth before the eﬁd’i
us example, in which starting at -3 gets thex. faeee

m the start to the end, in steps of 7 characters:
2>> letters(::7]

ahov

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

» 3 famous ba famousr...'
want to ensure that the substring is a whole worc
i those cases, you need regular expressions, w

{ "mtrq;duced the atoms of Python: numbers, strings, and va :
eexercises with them in the interactive interpreter.

are in an hour? Use the interactive inte
r of seconds in a minute (60) by the numt

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

1 2 we started at the bottom with Python's basic data types: boole
d strings. If you think of those as atoms, the data structures in this ¢
es. That is, we combine those basic types in more complex ways. You
2 every day. Muc h of programming consists of chopping and gluei g data
ific forms, and these are your hacksaws and glue guns. '

sand Tuples

mputer languas{es can represem a sequence of items indexed

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Mc&'ﬁwﬂn&uﬂ&ﬂ@h
L on Tue/Thu/Sat. OnSnmdayIﬂmuﬁ

Lists are good for keeping track of things by their order, especially
<ontents might change. Unlike strings, lists are mutable. You can chang

addnew elements, and delete or overwrite existing elements. The same '. all
amore than once in a list.

(reate with [] or list()
!Et 15!11\

ade from zero or more elements, separated by commas, and su
Btackets:

>>> empty_list]

= [|
s -
>»> weekdays = [‘Homfay', ‘Tuesday‘. 'b-'edr?ésday ; ’Thur}sday', '-'Fri;@]
»= blg birds = ['emu', 'ostrich', 'cassowary il .

22> first_names = ['G .-_qhdm . ‘)ulm Teny', 'Tenry', ‘Michael’] :
You can also make an empty list with the List() function:

>>> another_empty_list = list()
>>> another empty_list

nsions” on

| - 81 sh
Dl vt e o SRS

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Combine Lists by Using extend() or -+=

You can merge one list into another by using extend(). Suppose that a
person gave usa new list of Marxes called others, and wed like to merge
main narxes list:

>5> marxes = ["Groucho', 'Chice', 'Harpe', 'Zeppo']

>»» others = ['Gummo’, 'Karl']

>»= marxes.extend(others)

33> marxes

['Groucho', 'Chico!, 'Narpn’, 'Zeppa', 'Gumno', ‘Karl®)

Alternatively, you can use +=:

vvs marxes - [“Guoothe', 'Chice
223 ‘others = [‘Gunme | Rar
=32 ‘marxes #= others

253 fArXes

["Groucho’, 'Chico’, 'Hurpe’, “Zepoo', “Guemo', "Karl']

1fwe had used append(), others would have been added as a single list i
metguy ils ilems:

['Gummo’, 'Karl']

: apﬁend:(.‘nhhem)

g.ﬂrq len
- TSI

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

= "M e~

last insertion:

‘Chico’, 'Harpo', ‘'Gummo', ‘Zeppo']
delete an item by its position in the list, the items that follo:
item’sspace,and. the list’s length decreases by one. If
t version of the marxes list, we get this as a result:

= ['Grouche’, ‘Chico’, 'Harpo', ‘Gummo', 'Zeppo']

marxes[-2].del(). It’s sort of the reverse of assi
' _name from a Python object and can fre
1at name was the last reference to it

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

) X
-|;a'l':l lbl.. té{: nf:} "

te Multiple Sequ'encés with zip()" on page 79 intr

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

i

ctionary has the same key as the
-from the second dictionary wins:

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

ow': 'go faster', 're

» 'yellow'])

. keys() just returns a list. Python 3 returns
h is an iterable view of the keys. This is handy
aries because it doesnt use the time and memol

reen’, ‘red', yetlow')
on 3, yuu also need to use the Itst‘()' ﬁ: ction

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

'you use the set() function or enclose one or-)
rly brackets, as shown here:) :

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

= . |
low, let’s make a set from a list: |
i L) o .']
(,» set(['Dasher’, 'Dancer!, '‘Prancer’, ‘Mason-t
UDancer®, ‘Dasher', ‘Prancer', 'Mason-Dixon')

This time, a set from a tuple: 7

(>>> set(('Ummagumma‘, 'Echoes', 'Atom Heart Mother'))
{'Unmagumma ', " Atom Heart Hother', "Echoes ') /

When you give set() a dictionary, it uses only the keys:

(>»> set({'apple’: ‘red', 'crange': ‘crange’, ‘cherry': ‘red'})
{"apple', ‘cherry’, 'orange'}

2
} Test for Value by Using in

This is the most common use of a set. We'll make a dictionary called drinks. B
H is the name of a mixed drink, and the corresponding value is a set of its ingred

>>> drinks = {
‘martinl’: {'vedka', 'vermouth'],
'Black russian': {'vodka', "kahlua'}),

: sivh 'white ruszizn’s {'cream', 'kahiud', ‘vodka‘},
I mrin ‘manbattan': ('rye', ‘veimouth', ‘bitters'},
1 ‘surewdraver s {'orange juice', 'vodka'}

Eventhough both are enclosed by curlybraces ({ and }),a set is just a sequence uly
and a dictionary is one or more key : value pairs,

Which drinks contain vodka? (Note that I'm previewing the use of for, if, and
from the next chapter for these tests.))

>»> for nane, contents in drinks.items():
if 'vodka' in contents:
i print(name)

o

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

& operator isa set, which containsall the iten
__e"itl___lcr of those ingredients were in cc
onsidered False.

e example from the previous section, in wi

Scanned with CamScanner
Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

>>> marx_list = ['Groucho', ‘Chico’, 'Harpo']
>»» marx_tuple = 'Groucho', 'Chico’, 'Marpo’
>>> marx_dict = {'Groucho’: 'banjo', 'Chico’: ‘plane’, 'Ha
>>> marx_list[?) | '
133@1

>>> marx_tuple[2]

‘Harpo'

>>> marx_dict['Harpo']

‘harp’

For the list and tuple, the value between the square brackets isan integer offs
dictionary, it’s a key. For all three, the result is a value.

Make Bigger Data Structures

i We worked up from simple booleans, numbers, and strings to lists, tuples, sets
‘ dictionaries. You can combine these built-in data structures into bigger, more con
structuares of your own. Tet’s start with three different lists: .

>>> marxes = ['Groucho', 'Chice', 'Harpo']
| =2> pythons = ["Chapmen', ‘Cleese’, 'GiLlUliam', 'Janes’ , Palin']
>>> stooges = ['Hoe', 'Curly', 'Larry']

]

We can make a tuple that contains each list as an element:

>>> tuple_of_lists = marxes, pythons, stooges

>>> tuple_of_lists

(["Groucho', 'Chico', 'Harpo'],

['Chzpman’, ‘Cleese’, 'Gilliam', 'Jones', ‘Palin'],
['#oe', ‘Curly’, 'Larry')) '

e can make a list that contains the three lists:

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

