Projectile on Inclined
Plane, Motion of Two
Interacting Bodies and
CHAPTER Bifilar Pendulum

9.1. RANGE ON AN INCLINED paNE

A particle is pro e .
horizontal from a li'tl;inj Sod with 5 velocity uat an angle o to the

tOona i . u
 to the horizontal. The diree 3 Inclined plane, inclined at an angle B\

; : . 8reatest slope, of the plan Let th :
rticle strike the inclined plane a 4 b plane. Let the \

. \

: ‘ B
Let O’Ei':d qu be respf’CtI}’EIY the horizontal and inclined o) X
plane through the point of pr 0jection O. OBis  line perpendicular Fig- 3.1

Component of initjal velocity ualong OA = y cos (ot - B)
Component of initial velocity y along OB = ysin (o - B)
The projectile moves with a vertica] retardation g,
Acceleration along OA4 = - gsin B
Acceleration along OB = - gcos B

Now, let T'be the time taken by the particle to

: 8o from Oto A. When the particle reaches A
after time T, the distance moved perpendicular to the

plane is zero.

Hence, 0 = usin(a - p).T - %g cosp.T? ( S=ut+ % arz)
2u sin (o - B)
T= sill)
gcosf
When the particle strikes A after time 7, the distance OA (= B) moved is the range on the

inclined plane.

R = ucos(o - B).T - %gsinB.T2

N _q 2usin(a - B) 1 4dtsin? (a - )
= ucos(a - B) W 285‘"’3 & cos? p

_ 2u? sin(a - B)
~ gcos’p

[cos(a - B) cosP - sin(a - B) sin B]

2 sin(o - B) cosa
g cos’p
123
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0.2. FIANGE AND TIME OF FLIGHT DOWN AN INCLINED PLANE %

['he particle is projected down the plane from O at an elevation
a [l 92) Imnal velocities along and perpendicular 1o OA are
weos (ot By and wsin (¢ v 5y Acceleration along and perpendicular
10 OA are g sin [§ and -~ g cos 5. When the particle reaches A after
time 7, the distance moved perpendicular to the inclined plane s

zero. Therelore,
2usinle + 3)

g eosfs

0« usin(u + 3.1 ;g cosp.1y’ on T,

I
Range ~ OA = R, = ucos(a + )7+ -7 sin 3.7,/

_2"{.‘“]1((! I [})cosa
J'4 cos’ f3
Note 1. Results down the plane can be obtained by putting — 5 for 5 in the resulyy
k73

previous article.
Note 2. In some problems, the elevation relative to the inchned plane ma
p p y be given in g

cascs we must calculate the elevation relative to the horizontal,

Example. A particle is projected with a velocity of 32 ms™! at an angle of 60° 10 the horiomg
Find the range on a plane inclined at 30 to the horizontal when projected (i) up the plane and 1,
4

down the plane.
(/) When the particle is projected up the plane, the range on inclined plane is given by
2u’ sin(a - f)cosu
R = — e st
g cos” [}
Here, u= 32 ms ' ; o= 60% 3= 30°; g = 9.8 ms 3
2 %32 x 32 x sin30” x cos 60°

U P = 69,66 m.
0.8 cos” 30°

(/) When the particle is projected down the plane at an angle u with the horizontal, the rang

down the plane is given by
_ 2u sm(u 4 ‘S)wsu

2 %32 32 A 4In ‘)0" % COS 60"
= 7 — = 393 m
9.8 cos” 30°

Maximum Range : 7o find the direction of projection for the maximum range on the inclined

plane.
2u sin(a - B)cosa

g cos’

Mz .
ol [sin(2a - ) - sinf]
gcos’ ”
The value of R depends on «, for given values of w and . Hence R 158 maximum ¥

sin (20— ) = 1 ; i.e.,, when 200 23 = 90° or « = (45 + [3/2)°.
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£¢ op
the inclined plane
R - _

m e — y
g cos? g (1 - sinf)

2
R EE%“SE@ ____u’(-sinp)
“sSwmTB) g (1+sinB)l-sinp)

=—u

g (1 + sjp B) e

Note : ¢ =45°+ B/2 Thep ¢ _

This shows that the direction
inclined plane.

B=4S‘B-’3and90°—a=45°—ﬂ.2,

glvmg t.he .
Maximum range bisects the angle between the vertical

| i g cos’ B [sin(2a - B) - sin B]
| The range R and the values of « and B are v
Hence sin (20 — .B) is constant. There are two-values p—— -
- usfy the above equation. Let the corresponding values of b(e2 g aE()j' (iac’ll]‘t::zs than 180° which
| 20, =P =180 - (20, B) or o, -pr2= 90‘— (o, —:i.%)

o - (45 + B/2) = (45+ B12) - ot

i le of projecti ivi - !
(45+p/2)1s t'he angle of projection giving the maximum range. Therefore. 5 +'%
(hat the direction giving maximum range bisects the angle between the

sfollows L : ; xy
- ngles of projection that can give a particular range (Fig. 9.3). :
Example 1. Prove that for a g h‘_en velocity of projection the ratio between
o maximum ranges up and down an inclined plane inclined at an angle B to the Fig. 9.3
~1-sinp »
VEOTE |4 sinB
We have already proved that,
"

Maxi the inclined plane=R = —————
Maximum range up p o= 5 (5inD)

2u” sin(a + B) cosa

g cos> B

Range down an inclined plane = R, =

2

_ " [sin(2a + B) +sinp]
g Cos”™

This range is maximum when sin (20t + ) = 1.

e . u’ (1 + sinP) u’
Maximum range down the inclined plane =R, = 1a :
geos’p g (l-sinP)
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R u’ xg(l—sinﬂ)=l—sinﬁN !

m
5

Hence E it g (1+sinP) u- 1+sinp

Example 2. A particle is projected at an angle a with the horizontal fro, the |
;7001 g
right a,,g,.{:;

ontal is B. Show that it will strike the plane 4

plane, whose inclination to the horiz .
usin (x - )

co(t5=2mn(ﬂ-ﬂ)-
Sol. Let w be the velocity of projection. The components
of u parallel and perpendicular to the plane are u cos (ax-B)
and u sin (a - B) respectively. Accelerations in these directions
are g sin P and g cos P respectively (Fig. 9.4).
Time of flight on the inclined plane
_ 2usin(a - B)

2 cosh (1)

Since the particle hits the plane at right angles to the plane, the velocity of the partice
to the plane at that instant is zero. Paralle

0=ucos(a—PB)—gsinP.TorT= ﬂf’_(f“_m
g sinf ()
" 2u5in(a—ﬁ)_ucos(a—[3)
Equating (1) and (2), coosf  gsin
or cot B = 2 tan (a — B).

Example 3. The angular elevation of an enemy's position on a hill h metres high is B. Shy,
that in order to shell it, the initial velocity of the projectile must not be less than +/gh(l + cosec ),

Sol. Let u be the velocity of projection.
Maxm. range up a plane inclined at an angle o with the horizontal

g i B b
”  g(1+sinB)

: . h
If the shell is to hit enemy’s position R = EE (Fig. 9.5)

u’ A
g (1+sinB)  sinp
2% gh(l + sinB)
sinf
or u 2 Jgh(l + cosec B)

'Ex'ample 4. The greatest range on the horizontal plane of a projectile starting witha certain
velocity is 150 m. What is the greatest range when projected with the same velocity up an inclined
plane inclined 30° to the horizon ?

Sol. Let u be the velocity of projection.

2
Max. range on the horizontal plane = Iy 150 m.

Max. range on the inclined plane

u’ 150

g (1+sinB) 1+ sin30°

=100 m




Impact of Elastic
Bodies

CHAPTER
8.1. IMPULSE OF A FORCE ~ e — e —
The impulse / of a constant force F acting for a time tis defined as Fx ¢.
=g

By Newton's second law, F'= ma.
If uand vare the initial and final velocities of the particle,
a=(v-ult

v-u
I=Ft=mat=m ——t——)t=m(v— u)

Thus the impulse of a force is equal to the change in momentum produced.

Impulsive Force : Definition. An impulsive force is an infinitely great force acting for a very
short interval of time, such that their product is finite.

The force and the time cannot be measured because one is too great and the other is too small.
Nevertheless, their product, which is definite, is capable of measurement. This we have seen, s the
impulse of the impulsive force and is equal to the change in momentum produced. Hence an impulsive
force is always measured by the change in momentum produced. In practice, the conditions of an
impulsive force are never realized. Some approximate examples of impulsive force are : (1) the blow
of a hammer on a pile and (2) the force exerted by the bat on a cricket ball.

Example 1. A pile driver of mass 3000 kg falls through a height of 5m on to a pile of mass 1000
kg. If the pile is driven 0.24 m into the ground, find the resistance of the ground (supposed uniform)

Sol. Velocity with which the pile driver impinges on the pile
v=2gh=\2x98x5=99ms"

Momentum of the pile driver = mv = 3000 x 9.9 kg ms™.

After the impact the total mass in motion is 4000 kg.

Let Vbe the common velocity of the driver and pile immediately after the impact.

By the principle of conservation of momentum,
4000 x V'=3000x9.90r V=74 ms !

Now the velocity is destroyed in 0.24 m. If a s the retardation, we get
0 = (7.4)*-2a(0.24) or a = 114.] ms-2

(arding force is 4000 x 114.1 = 4.56 x 10° N

The re
The resistance of the ground R must equal the retarding force plus the weight of the driver
and pile. R = 4.56 x 105+ 4000 x 9.8 = 4.95 105 N
114

Y «
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S AT IS A COLLISION ?
b e lear much about atomic, nu‘xlum and elementary particles, experimentally by observing
s between them. The study of collisions of molecules in gases has developed into kinetic
s

o of gASeS. The study of collisions i1s based on the principles of conservation of momentum and
Y

n & collision, 8 relatively large force acts on each colliding particle for a relatively short time.

woe 18 called an impuisive force. When a bat hits a ball, the bat exerts a large force on the ball
, hall and the bat are deformed during the collision

7
b t:,c force of interaction may be due to different causes in different cases.

Thus in the collision between two billiard balls, the force of interaction is due to elasticity.

mes Into existence only when the two bilhard balls come into physical contact. In the case of

o ng of @ particles by the nucley, it is the electrostatic force that causes the interaction.
“ﬂﬂ:n alpha particle projected towards the nucleus of an atom will be repelled by the electrostatic
.,m-s-duf to the nucleus. In this case, the particles will not touch each other. Even then this process
. 4lled a collision because a relatively strong force acts between the particles and this force has a
:;md effect on the motion of the « particle
‘ Elastic and Inelastic collisions : There are two types of collision :

() elastic and (1) inelastic.

(i) Elasuc collisions are those in which the total kinetic energy before and afler the collision
emains unchanged. Collisions between atomic, nuclear and fundamental particles are the true elastic
ollisions. Collisions between 1vory or glass balls can be treated as approximately elastic collisions.
Lsuch a collision between two particles, we have

mu, tmyu, =m\y, + m,v,

and -;-:u.ul: + 5 m,uzj = Em,vl: + —;—mzvzz
where m, and m, are the respective masses of the two particles and u, u,and v, v, their velocities
hefore and after the collision.

() 1f the K. E. 1s not conserved, the collision is said to be inelastic. When two bodies stick
wgether after collision, the collision is said to be completely inelastic. For example, the collision
between a bullet and its target is completely inelastic when the bullet remains embedded in the target.

Completely Inelastic Collision : Suppose a body of mass m, moving with a velocity u, collides
with a body of mass m, moving with velocity u, in the same direction. The two bodies stick together
dier collision and they move with a final common velocity ¥ in the same direction as the original.
s not necessary to restrict the discussion (o one dimensional motion. Using only the conservation
of momentum principle,

mu + myu, =(m +m,)V.
From this the value of ¥ can be determined if u, and u, are known.

L FUNDAMENTAL PRINCIPLES OF IMPACT

L ‘ Newton’s law of impact-coefficient of restitution. When two bodies impinge directly,
?1! relative vglocity after impact is in a constant ratio to their relative velocity before impact and
“ the opposite direction. This constant ratio depends only on the material of the bodies and not

" ::ﬂsses or velocities. It is called the coefficient of restitution and is denoted by the letter e.
v th
2

¢ velocities of two bodies before the impact and V|, ¥, the velocities after impact,

‘rl — vz

i T8 OF Wy v Vy B € (M — )
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,) are (heir relative velocities, before and afier 1, i M,

Here, (1, — 11,) and (v =V - afiis _
he bodies are called perfectly plastic bodies. If e = 1, the bodiefdu' 1

ass balls, € = 0.94; For two lead balls, e = (2.
ient of restitution. The ratio, with a negative sign, of the )
Jative velocity before impact is called the coe ﬁfﬂemzj’rwe .
odies perpendicular to the line of impact. Whe,, Yesy
] action between them. Hence there is no change orfWO Sy
o change of velocity for either body along Ule"l?n o

f a body in a direction perpendicular (o (p, en |,
Comy,
n

between Oand 1 Ife = 0,1 ‘
Ie ta“e&

perfectly clastic bodies. For two gl

Definition of coeffic
of two bodies after impact 10 their re

2.  Motion of two smooth b
bodies impinge, there is no tangential act
along the common tangent. Hence, there is n
other words, there is no change in the velocity ©

normal due to impact.
ervation of momentum. The total momentum of two bodies A
Im

3. Principle of cons :
common normal should be equal to the total momentum before the impact alopg ey
g

0(»”‘
"“f!u,,

along the
direction.
The above three principles are sufficient to determine the change in motion of two impip
smooth bodies. Bing
Definitions. (i) Two bo
is along the common normal a
(if) Two bodies are said to impinge o
along the common normal at the point of contact.
(iif) The common normal at the point of contact is called the line of impact. Thus, in the cag

of two spheres the line of impact is the line joining their centres.
8.3. OBLIQUE IMPACT OF A SMOOTH SPHERE ON A FIXED SMOOTH PLANE =

Let XY be the fixed plane. Let the sphere strike the fixed
plane at point P. Then if Cis the centre of the sphere, CP is the
common normal at the point of contact of the plane and the sphere.
Let « and v be the velocities of the sphere before and after impact
making angles o and 6 respectively with the common normal CP
[Fig. 8.1]. By Newton’s experimental law, the relative velocity of
the sphere along the common normal after impact is —e times its
relative velocity along the common normal before impact.
vcos0-0=—e(-ucosa-0)
or vcos 0 =eucos a
Since both the sphere and the plane are smooth, there is no force in a direction parallel to the

plane. Hence the velocity of the sphere resolved parallel to the plane is unaltered by the impact
-

A3

dies are said to impinge directly when the direction of motion of, \
a

( the point where they touch.
bliquely if the direction of motion of either or bog -
0

Al

vsin O = u sin o
Dividing (1) by (2), cot 6 =e cot a
Squaring and adding (1) and (2),

v = (sin a + €2 cos? at)
Equations (4) and (3) give the velocity and direction of the sphere after impact.
Cor. 1. The impulse of the plane on the sphere is measured by the change of momentum of e

sphere measured along the normal.
I =ml[vcos O~ (- ucosa)]=m[vcos 0+ ucosa]
=m [eu cos a + u cos a)

LA

I =mu(l+e)cos a

Cor. 2. 1fe= 1, then 0 = . and v =  i.e., when a perfectly elastic sphere impinges 078 s

B
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Bodies
ogmercBodes R s 17
s velocity 1s unaltered i magnitude | R
\la“‘ "\ AL . . }q e L A Y ‘ht\ '“‘l‘ill" al“l lh w s L i .
Wl of nerdence ¢ angle of reflection is equal
{ B . - "G ¥
Cor \, Ife 0, then cot Q=00 2N I from \ “l and

wsmac[from ()] Thus if the sphere
‘ plane with veloeity w sin «
Cor & 110" 0 then © = 0 and v = eu from (3) and (4) i ¢

Jl plane, rebounds vertically with velocity ew

e plane are both inelastie, the sphere moves along the
W

Jla .\]‘hﬂ\' ““PHIHL‘\ normally on a
“;\\I“

0 Cnf. s‘ 1““‘ \‘hl\lmc mn K.E of the \l‘l\t‘l\' ihl\- o mpact on the |‘li|llt‘ I8 given |W

lm v o—uh) ‘ n v+ n) (v |
. ( 3’ Ve (v-w z (v w
Here, () w) = 1= Impulse of the foree of the sphere on the plane.

prample 1. 4 seel ".il” i let fall through a height of 0.64 m on a plate of steel. The height
v which it rebounds iy 0.36 m. Calculate the coeflicient of restitution ‘

501,1,cluh<:lhc\elwu_\' of the ball when 1t strikes the plane. Then o’ 2uh. The ball rebounds

qteally with veloaity ew after the first impact. The height to which the particle rebounds after the
(ew)” e
it impact = "3‘;‘” =hiesh :“
‘ \ . ) h
But w =2gh o h = eh oot ¢ A or e Jh‘
h h
0.36
e, hy =036m h=064m; ' e= J' 0758
ok l 0.64
34, DIRECT IMPACT OF TWO SMOOTH SPHERES %

A smooth sphere of mass m, moving with a velocity u, impinges on another smooth sphere of
nass m, moving in the same direction with velocity u,. If e is the coefficient of restitution between
aem find the velocities of the spheres afler impact

Since the spheres are smooth, there is no
mpulsive force on either along the common tangent.
Hence n this direction their velocities after impact are
te same as their oniginal velocities f.e., zeroes.

Letv, and v, be the velocities of the two spheres
dong the common normal after impact [Fig. 8.2].

By the principle of conservation of momentum,

mv, +myvy =y g, wl(1)
By Newton's experimental low,
‘u‘ -y, =@ (“| - "2) .t:)

Multiplying (2) by m, nn‘d adding to (1),
v, (m +m,) = mu, (L+e)tu (m - em,)

) B e —— e — (3)
" (my + my)

Muluplying (2) by m, and subtracting from (1),
vy(my +m) =mu, (1 +e)tu,(m,- em,)
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iy (14 t") by My

o
2 m,)

Equations (1) and (1) give the velocities of the two spheres afler impact,

. y ¢ i sSsS m o\ K p
Cor, 1, The impulse of the blow on the sphere of mass m, = change of momentyp, Prog
myrny (14 €) (1 = 4y)

, v, - W
eV ) m + my

This is equal and opposite to the impulse of the blow on llrc sphere of mass m,,

Cor. 2. 1fe= L and m = m, then, v, = &, and v, = ,. Thus, 1iltwo equal perfectly, clasucsphﬂ“
impinge directly, they interchange their velocities.

Example 1. A ball of mass § kg, moving with a velociry of 10 ms ’ ""'P"ﬂ.s.'cj.s‘.dirrctl_v on any
mass M kg, moving at 2 ms ' in the opposite direction. If ¢ = 0.5, find the velocities of the balls afe
impact.

Sol. Let v, and v, be the velocities of the balls after impact (Fig. 8.3).

By the principle of conservation of momentum,

v, + 24y, =8 % 1024 x2 &

By Newton's experimental law, vw

v -w=-05[10-(-2)] Fig. 83

Solving v, = - 3.5 ms 'and v, = 2.5 ms !

Example 2. A smooth sphere of mass 4 kg moving with a velocity of 8 ms ™! impinges directly on
a smooth sphere of mass Skg moving in the same direction with a velocity of 4 ms™!. Find the velocitie
of the spheres after impact. Caleulate also the loss of K. E. due to the impact and the impulse of the
blow on the sphere of smaller mass, (¢ = 0.5).

Sol. Let v, and v, be the velocities of the smaller and bigger spheres after impact.

By the principle of conservation of momentum,

dv +5v, =4 x8+5 x4 N
By Newton's experimental law,
v -v,==05[8-4] -(2)

Solving, v, = 4.667 ms ' and v, = 6.667 ms !

Total K.E. before impact = %x 4x8 4 -;— xSx 4% = 168 )
Total K.E. after impact

x 4 x (4.667)° + % x5 x(6.667)° =154.7)

Y-

Loss of K.E. = 168 - 154.7 = 13.3 ).

Impulse of the blow on the sphere of mass 4 kg
=m(v) - u)) = 4(4.667 - 8) = - 13.33 ).

Example 3. 4 ball of mass m, moving with velocity

is stationary. If the collision is elastic, ¢
second ball

; u, strikes another ball of mass m, which
a’(‘u’a“’ ‘heJM(\ﬂlﬂn Qf’hv kinelk‘ energy ”'a’l.s"ftnfd o the

2myu
Sol. From Eq. (4), v, = ——_ (.., = i
q. (4), v, (my + miy) (“uy=0ande= 1)
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— K E of the first ball -y
| e
erred to the second ball I i = I [ 3'n|u| \?
h ‘ “‘n" L ] % l‘ v » - - n;: ' = ' 11
- - L m, + ;".‘

Frachion of K F transferred to second ball
'

1

! [ 3»!11” b
m, | -
- : & J
Lo \Mtm ) __Amm,
% h ]
mu; (m, + m,)°
a TR 2

-

prample 4. 4 ball impinges on another equal ball moving with same speed in a direction
endicular 10 1i5 OWR, the line joining the centres of the balls at the instant of impact being
w
wlar to the direction of motion of the second ball, if e be the coefficient of restitution, show
prpendi ‘ ,

o the direction of motion of the second ball is turned through tan’ I (——1 = e).
| 2

sol. Let C, and C, be the centres of the balls 4 and B
« 4 be the velocity of the ball A before impact along the
‘_, o centres and u the velocity of B, perpendicular to the
;-x of centres. Since the velocity of the ball A 1s u along
s e of centres, after impact it will move only along the
¢ of centres. Let it move with velocity v. Let v, be the
ity of the second ball B at an angle 6 with the line of

cares [Fig. 8.4] Fig. 8.4
By the principle of conservation of momentum,
mv, cos O + mv = mu where m is the mass of each ball
or v, cosO+v=u (1)
By Newton’s experimental law, v, cos 0 —v=—¢(0 - u) = eu
of v,cos0-v=eu (2)
The velocity of the second ball B perpendicular to the line of centres is unaltered by the impact.
Hence, v,sin 6 =u ..(3)
Adding (1) and (2), 2v, cos O = u (1 + ¢) ..(4)
(1+e)
Dividing (4) by (3), 2 cot © = (1 + ¢) orcot 0 = 5 P
The angle through which the direction of motion of the second ball is tumed through is
¥-0,ie, tan! Lt-g.
2

15. LOSS OF K.E. DUE TO DIRECT IMPACT OF TWO SMOOTH SPHERES ———

Letm,, m, be the masses, u, and u,, v, and v, their velocities before and after impact and e the
“fficient of restitution. Then, by the principle of conservation of linear momentum,

myvy + myvy = myuy T myl A
By Newton's experimental law,
g e () -(2)

-
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Square both equations, multiply the square of the second by m,m, and add the resul(s Th

(m? +m H’h)" }
| l = (mu, + m2112)2 + &mmy(u; - u,)’
(m2 +my m,) V:»
p L - 2 i 2
my (m,+ m)vl+my(m, 4 my)v; = (mu, Uyt mymy(u) ~ )
V2
+ &2mm,(u, uy)* —m My, -y )
. 2

2 ke N
(m, + m,) (”‘|V12 3 ’"2"22) = (m, + m,) (muj + m2uz) mm, (1) = u,)* (1 - &)

1 mm, )

2 2 ] 2 I 2__._1_._..;_(,4_” )~(1_ 2
—myv, + —m,v, = —mu; +— Myl 1 2 e’)
g T Ty t272 T 5 T Ty 2 my +m,
| 7 1 2

Now, > Y, +Em2v2 K.E. after impact.

%m,u,2 + % mzug = K.E. before impact.

I mm
The loss in K.E. = —-——(lﬁ ~uy)t (1-¢%)
2 ml m2
Note : When e = 1, the loss of K. E. is zero. In general ¢ < 1 so that (1 — €°) is positive. () -1,
is always positive. Hence, there is always a loss of K.E. due to impact. The K.E. lost during i impact
is converted into (/) sound, (ii) heat or (iii) vibration or rotation of the colliding bodies.
1 mym, (u; - uz)z

When e =0, the loss in K.E. = —
2 (m] = ’"2)

i.e., there is maximum loss of K.E. on impact of plastic bodies.

8.6. OBLIQUE IMPACT OF TWO SMOOTH SPHERES

A smooth sphere of mass m, moving with velocity u ; impinges obliquely on a smooth sphere of
mass m, moving with velocity u,. If the directions of motion before impact make angles a and B with
the common normal, find the veiocmes and
direction of the spheres afier impact.

Let AB be the common normal (Fig.8.5).
Let v, and v, be the velocities of the two
spheres after impact making angles 6 and ¢
with the common normal AB. Before impact
velocities along the common normal 4B are
u, cos a and u, cos P and velocities
perpendicular to 4B are u, sin o and u, sin
P. After impact velocities along AB are v, cos
0 and v, cos ¢ and perpendicular to 4B are Fig. 8.5
v, sin 0 and v, sin ¢.

By the principle of conservation of momentum, the total momentum of the two spheres along
the common normal is unaltered by the impact.

mv, cos O + m,v,cos ¢ =mu, cos a + My, cos B (D
By Newton’s expenmcntal law (on relative velocities along the common normal),
v, cos 0 — v, cos ¢=- e (1, cos a - u, cos f) Q)

Since there is no force perpendicular to the common normal AB, the velocities of the spheres
perpendicular to the common normal AB remain unaltered duye (o impact. Hence
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MO =, sin a (3)

v, s ¢ = u,sin ] (4)
and adding to (1),

(my = emy) uy cos o+ my (1+ ¢)u, cos 3 (5)

(m; 4 m,)

3[](‘

\-Iulllpl)'lllg (2) by m,

v, COS 0=

Giplying (2) by m, and subtracting from (1),
(my —emy) uy cos B+ m (1+¢)u cosa (6
(my + my) e9)

and hence we can find v,. Dividing (3) by (5) we get
0 and ¢ are determined

Mul

v, COS ¢ =

squaring 3) and (5) and adding we get v{
q from (4) and (6) we can get v, and tan ¢. Therefore, v, v,,

a0 gimilarly;
uely- _ |
s Cor. 1. The impulse of the blow on the sphere of mass m, = its change of momentum measured
ong the common normal
’ =mv, cos O — mu, cos a
mm, (l+e
=m, (v, cos 0-u, cosa)= __1__2_£____) (11, cosP — uy cos a)
(m; + my)
This is equal and opposite to the impulse on the sphere of mass m,.

TO OBLIQUE IMPACT

heres perpendicular to the common normal are unaltered Therefore,
the case of direct impact if we substitute u, cos a and , cos B for

8.7, LOSS OF K.E. DUE

The velocities of the sp
ihe loss of K_E. is the same as in
y,and 1 respectively.

mym, (1 - e
The loss in K.E. = ——'—i———)

)
Y (u; cos o = u, cos f3)

Example 1. 4 ball of mass m impinges obliquely ona
ball of mass M at rest. Ifm = eM, prove that the directions
of motion of the balls are af right angles after impact.

Sol. Before impact, let # be the velocity of the ball
ofmass m and a its direction of motion with the common
sormal (Fig. 8.6). Before impact, the second ball of mass
\fisat rest. Afler impact, the second ball of mass M will
move along the common normal, because the force on
il during the period of impact is only along the common

normal. Let the velocity of the second ball of mass Mbe V.
After impact, let v be the velocity of the ball of mass m making an angle 6 with the common normal.

Fig. 8.6

By the principle of conservation of momentum,
mvcos®+ MV=mucosa+0
ie., eMvy cos 0 + MV = eMu cos a
or, evcos 0+ V=eucosa (1)

By Newton’s experimental law,

veos0—V=—e(ucoso—0)orvcosd-V=-eucosa ikl )
Adding (1) and (2), (1 + €) v cos 8 = 0 or cos 6 = 0 or 6 = 90°,
Hence, the directions of motion of the balls are at right angles afler impact.

e f;;-n:,p-le.z'. If an oblique collision occurs between two equal smooth perfectly elastic spheres
ich is initially at rest, show that their paths after impact are af right angles to one another.

|
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Propeﬂies of Maﬂa
Sol. Let u, be the velocity and o, inclination to the line of impact of 4 before i, . '

8.7). After impact, let these be v, and B,. B is initially at rest. So after impact it Moves alonl; f}‘] (Fig
¢|

Ing

of impact with velocity v,. By the principle of conservation of momentum,

mv, cos B, + mv, =mu, cos a,

or v, cos B, + v, =u, cosQ, wi{1)
By Newton’s experimental law,

v,cos 3, -v, =—e(u, cos a, —0) k)
Adding (1) and (2),

2vicos B, =(l-e)(u cosa;)=0( e=1)
v, can not be zero.

cos B, =0or B, =90°

+ EXERCISE VIl e

Section A -

1. Mention the three principles that hold good when an impact takes place between two smooth spheres.
Define “coefficient of restitution”.

Define impulse of a force. How is it measured? What is an impulsive force?

- Define : ‘Line of impact”. Distinguish between direct and oblique impacts.

Explain “Elastic collision”; “Inelastic collision”.
Explain the momentum and impulse.
State and explain the difference between elastic and inelastic collision.

S M Aw N

Section B

7. A smooth sphere has an oblique impact on a fixed smooth plane. Derive expressions for the magnitude
and direction of the velocity of the sphere afier impact.

8. Derive expressions for the velocities of two smooth spheres after direct impact. Find the loss of kinetic
energy.
9. Find an expression for the loss of kinetic energy due to direct collision between two spheres.
10. Derive equations governing the velocities and directions of two smooth spheres afier oblique impact.
I1. Derive an expression for the loss of energy during the oblique impact of two solid spheres.




