Elasticity

1.1. INTRODUCTION
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A body can be deformed (1., changed in shape or size) by the suitable application of external
forces on It A body Is said 1o be perfectly elastic, if it regains its f)figillal shape or size, when the applied
forces are remuved. This property of a body to regain its original state or condition on removal of the
applied forces bs called elasticity. A body which does not tend to regain its original shape or size, even
when the applied forces are removed, is called a perfectly plastic body. No body, in nature, is either
perfectly elastic or perfectly plastic. Quartz fibre is the nearest approach to a perfectly elastic body.

Stress . When an external force is applied on a body, there will be relative displacement of
the particles and due 1o the property of elasticity, the particles tend to regain their original positions.
Stress is defined as the restoring force per unit area. If a force Fis applied normally to the area of
cross-section A of a wire, then stress = F/A Its dimensions are ML-! T 2.

Thermal Stresses : Suppose the ends of a rod are rigidly fixed, so as to prevent expansion or
contraction. If the temperature of the rod is changed, tensile or compressive stresses, called thermal
stresses, will be set up in the rod. If these stresses are very large, the rod may be stressed even beyond
its breaking strength. The stress is tensile when there is an increase in length. The stress is compressive

when there is a decrease in length. A tangential stress tries to slide each layer of the body over the
layer immediately below it.

Strain : When a deforming force is applied, there is a change A A B g
in length, shape or volume of the body. The ratio of the change in any / '
dimension to its original value is called strain. It is of three types :- . )

(1) The ratio of change in length (J) to original length (L) is called M:’ ,,'
longitudinal strain (VL) H f;'

(2) Let ABCDbe a body with the side CDfixed (Fig. 1.1). Suppose |/ '

a langential force F is applied on the upper face AB. The shape of the D’ é
body is changed to A'B CD. The body is sheared by an angle ¢ This e
angle & measured in radians is called the shearing strain (). &%

(3) Volume strain (Bulk strain) : The ratio of change in volume (v) to original volume (V) is
called volume strain (v/'V).

Hooke's Law : Within elastic limit, the stress is directly proportional to strain. Stress o strain
of stress/strain = E . E is a constant called modulus of elasticity.

The dimensional formula of modulus of elasticity is ML ' T2, Its units are Nm2.

1.2. DIFFERENT MODULI OF ELASTICITY —

(1) Young's modulus (E) : /t is defined as the ratio of longitudinal stress to longitudinal strain
within elastic limits. Let a wire of length L and area of cross-section A undergo an increase in length
I'when a siretching force F is applied in the direction of its length.
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Clearly ¢ = //L where / is the relative displacement of D“ ;
the upper face of the cube with respect to the lower fixed face, Flg. 1.2 5

distant L from 1.
This angle ¢ through which a line originally perpendicular to the fixed face is tumned, js

measure of the shearing strain.

Tangential stress _ F A

Now, Rigidity modulus (G —
o, I - Shearing strain ¢

4 = 1% = Area of face ABEF.

G = T/¢ where T = Tangential stress.
k Modulus (K): /1 is defined as the ratio of volume stress (Bulk Stress) to the volume

Here,

(3) Bul
strain.

When three equal stres
there is a change of volume v in its original volume ¥, we have, Stress =

strain = —v/ V. The negative sign indicates that if pressure increases, volume decreases.
Bulkstrees F'A _ P

Volume strain - -v/V TV

Poisson’s Ratio (v): When a wire is stretched, it becomes longer but thinner, i.e., although its

length increases, its diameter decreases. When a wire elongates freely in the direction of a tensile stress,
1 contracts laterally (i.e.. in a direction perpendicular to the force). The ratio of lateral contraction

10 the longitudinal elongation is called Poisson s ratio. It is denoted by the letter v.
strain A in its own direction and lateral contractional strain

ses (F/A) act on a body in mutually perpendicular directions, such that
pressure P = F/4. Volume

If unit stress causes an extensional
u in a perpendicular direction, v = WA,

1.3. RELATION BETWEEN ANGLE OF SHEAR AND LINEAR STRAIN

Consider a cube ABCD having each side equal to L with its face <[> .
A A B :

DC fixed (Fig. 1.3). Let a shearing force acting along the face 4B deform T : 7
K

the cube into the rhomboid A'B'CD. The angle through which the
face AD or BC has been tumned is evidently the shearing strain. The
diagonal DB has elongated to DB’ while the other diagonal AC has L |ér

shortened to A'C. Draw BK perpendicular to DB’. Since ¢ is very / g /
small, ABKB' may be assumed to be a right angled isosceles triangle l i ’

and ZBB'K = 45°. Further, DB = DK.
. - D C
Tensile strain Lo DB'-DB _DB'-DK KB’ Fig. 1.3
along diagonal DB ST s = ] gy
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Elasticly
But in ABKB', KB'/BB' = cos 45°
or KB’ = BB cos 45° = BB/ 2
We have, DB:\/P-FI}:L\/E
KB' BB'/\2 J
(’=—_.__—___£-_-££,___2 ['-'BB'/L:?]
DB . b2 3L 2

Similarly, compressive strain along diagonal AC = ¢/2. Hence, a shearing strain ¢ is equivalent

to a tensile strain and a compressive strain at night angles to each other, each of value ¢/2

Simllarly,. it can be pro.ved that a shearing stress is equivalent to a linear tensile stress and an
equal compressive stress at right angles to each ofher

1.4. RELATION BETWEEN VOLUME STRAIN AND LINEAR STRAIN

Consider a unit cube. Suppose it is subjected to three equal stresses, all tending to expand the

cube, in three mutually perpendicular directions. Each side becomes (1 + e) where e is the linear
strain. Hence the new volume of the cube is (] + ey =1+ 3e.

Increase in volume = 3e.

. Increase in volu
Volume strain = olume = k —

. Je
original volume 1

1.5. WORK DONE IN A STRAIN

When a body 1s strained, work has to be done to deform the body. This work done is stored up
in the body as potential energy. It can be shown that the work done per umit volume in any kind of

strain (linear, shear or bulk) is equal to [% * (stress) * (strain)]

(@) Linear Strain: Let a force F act on a wire of length L and area of cross-section 4 such that
the increase in length is /.

EAl

Young’s modulus = £ = L. or F=—r
Al L

Work done in producing a stretching d/ = F . dl = % di

Total work done to-pro-duce a } e _(F. g
stretching of the wire from 0 to /

27 2
’ EAldizEA[l_} L h R g
L LL2) 2 L 2 L 2

% x Stretching force x Elongation produced.

Now, volume of the wire = 4.L.
Hence, work done per unit volume of the wire

F.l
= Q—:li.iz-l-StrCSSXStrain.
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ce F, acting in the direction AB of cube ABC

: CD
{ =1 sheg

4
(b) Shearing Strain: Leta tangenual for
it through an angle ¢. In Fig. 1.3. AD =L and A.
Stress = F/L? and shearing strain = ¢ = /L
L LT # or F=GLI
L L1
Bbydl=Fdl= GL!dl

G =

Work done to displace the layer A
Total work done dunng the ‘; » f Fdl= fGL I dl
whole displacement from 0 to /]~

1
e p=leui=-Fi
2 2 b,
a4k Tangential force displacement
2
Volume of the cube =L’
. 1 Fl 1 F
Hence, work done per unit volume = 2 1— ~5 Z; 7
l
=—(F/A).0
5 /
= % Stress * Strain.

(¢) Yolume Strain: Let a stress or pressure P be applied uniformly all over a body of volume

¥ such that its volume decreases by v

Stress = P and strain = v/ V.

P Kv

Hence K= or P=—
vi¥ V

Work done to produce a small decrease in volume dv = P dv

Total work done for the whole ~ ] Pk
decrease in volume from O to v| 3 '

1 4
5 stress x change in volume.

Therefore, work done per unit volume = 1 & = _l P.
¥V B
1

5 Stress * Strain

k-xample 1: Find the energy stored in a wire 5 metres long and 10 * metre in diameter when it
s st hed through 3 x 107 metre by a load. Young s modulus of material is 2 * 10" Nm™.

e energy stored in the wire 1s equal to the work done in stretching it.
| | .
‘ '_ 5 Stretching force * Elongation produced.
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sample 2: Caloul - ‘
Fxample & . '1 il .'!Iu clastic energy stored up ina wire originally S metres long and
10 " mon diameter which has been stretched by 3 % 104 m due 10 a load of 10 kg

I rele » L g
, Stretching force < [longation produced Fxl

Stretching force  F - 10~ 98N - 98 N
Elongation produced =/ 3y = 10y

|
0 j-oxwxln" 1.47 x 102,

-~

Example )‘rl steel wire 2 < 10" mein diameter is just stretched between two points at a
temperature of 20°C Determumne its tension when the temperature falls to 10°C. Linear expansivity
‘ | i

of steel = L1 <10 K1 Young s modulus for steel = 2.1 < 10" Nm °

The total contraction ol the wire
: Lot

when the temperature falls by 10° €

Lo, [=Lx|1x10%x10=Lx11x10*

P EA_I_ i B om _’_:.[ 4
L i &

20x 10" x (107 Lxl. i
I 107" > m ( L) Lxl1x107 _ 55 56N,

1.6. BEHAVIOUR OF A WIRE UNDER PROGRESSIVE TENSION
[f we subject a wire (o gradually increasing load and plot a graph 4
between load and extension, we obtain a curve of the form shown in c
Fig. 1.4. It is called the stress-strain diagram. In the part OA, which
is straight, the extension is proportional to the load and the wire obeys
Hooke's law. In this range, the wire regains its original length when
unloaded and so it is called the range of perfect elasticity. ALA, the wire
reaches the elastic limit.
If the wire is loaded beyond OA, the extension is no longer 0 Load X
proportional to the load and Hooke's law is not obeyed. If the load (Stress)
I now removed, the wire will not regain its original length, but a Fig. 14
permanent clongation will be produced n it. At the point B, even the addition ofq very small lgad
causes enormous elongation. This point is called the yield point. After the yield point, the t‘TXfL‘nSan
ihereases very rapidly and depends on the time for which the lload acts. T!]C cxtens;gn of the wire
ROes on increasing and the area of cross-section decreases until the breaking point is reached and
finally the wire will break. The load at which the wire breaks is known as the breaking weight. The

(Strain)
Extension
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maximum load to which the wire can be subjected, divided by its original Cross-sectiong
called the breaking stress e
Elastic after-effect. [ 1s found that even within elastic hmit, practically all substances 1a
time (o reach their original length after the deforming force 1s removed. This delay in recoverip T,m
the original condition on removal of deforming forces 1s called elustic after-effect. Quartz phffs -
bronze, silver and gold have very little elastic after-effect and hence they are used as suspension :,J,hor
in Boys’ experiment, quadrant electrometer, moving coil galvanometer, ctc -
Elastic Fatigue. Ifa body 15 confinuously subjected to stress and stran, it gets fatigued, Consider
two torsional pendulums A and B having similar wires. A is set into vibration for a fairly long (i,
continuously, while B is at rest. Now if A and B are set nto vibration, with the same amplityde to
start with, 4 comes to rest earlier than 8. This is due to elastic fatigue of the suspension wire. E|ag

fatigue can be removed by giving sufficient rest to the wire.

1.7. RELATION BETWEEN THE ELASTIC MODULI —

Suppose three stresses P, O and R are acting perpendicular 1o
the three faces ABCD, ADHE and ABFE of a unit cube of an isotropic D V'R
matenal (Fig. 1.5). Each one of these stresses will produce an extension A E— B/
in 1ts own direction and a compression along the other two perpendicular  Qe— - “1 430

directions. If A is the extension per unit stress, the elongation along thf: :
direction of P will be A P. If p is the contraction per uni! length per unit /H ....... s

stress, then the contraction along the direction of P due to the other two 3 i F
stresses will be pQ and pR. R -
Let all the three stresses act simultaneously on the cube.
Net elongation along the direction of P=¢e = AP - uQ - pR.
Net elongation along the direction of Q=f=A0 - WP - pR;
Net elongation along the direction of R=g=AR-pP-pQ.
We can express the three elastic constants E, G and K in terms of 4 and p.
Case (i). Suppose only the stress P acts and 0=R=0.
We have then the case of a simple longitudinal stress
The linear strain = ¢ = A.P

The Young’s modulus = £ = cilmes — P = 1
Linear strain  A.P A

I
% A1)
Case (ii). Suppose the stress R =0and P =~ 0.
Then, the elongation along the direction of P 1s
e=AP-pu-P)=(h+n)P
The angle of shear ¢ =2e =2 (A +p) P
The rigidity modulus G is given by
s Stress i P l
Angle of shear ¢ 2(h+p)P 20.+p)

I
or 2(L+p)=—
il = A2)

or A=

. Case (iii). Let P= 0 = R. Since the body is now subjected to uniform stress in all directions,
the increase in volume is

3¢ =3(h-2u) P [ e=AP-pP-pP =020 F]
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6K + 2G
3. Relation between E, G and v

We have, from (1), A = 1/E
and from (2), L + u = 1/(2G)

Dividing (2) by (1),

or L2 =-£orl+v=—E—
A 26 26

Elastioly 7
The bulk strain = 3() - 2u) P
The bulk modulus = K = ___S_‘EEL_ - __-_P_ i i l
Bulk strain ~ 3(A - 2P XA -2p)
or (A '2“) o —1—’ (3)
1. Relation between E, G and K
We have, from (2), 2 (A + p) = 1
G
' ]
or D4y =
G ..(4)
, |
From (3), A-2u = —_
I 3K . i(5)
Adding (4)and (5), 3n =1, 1 _3K+G
G 3K 3GK
i 5 o 3K+ G
YT -46)
From (1), A =1/E
9 GK
E =
3K +G A7)
2. Relation between G, K and v
By definition, Poisson’s ratio v is given by v = p/A.
5 1
From (2), A+U = —
(2) H G
1
From (3), A-2U = —
(3) B e
Subtracting (3) from (2),
1 |
Bk i e e
BT 36 TR
3K -2G
= (8
g 18 GK )
TR e R (Using Eq. 6)
- "TXTT18GK “GK+0) =
(3K - 2G)
or V=

w9
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4. Limits to the value of v.
X - 20
We have from (()) 1 b—‘( * '

; (1
nce, 1f v 1s posiive, (1 +v) 1s positiye and,

|
>0 < — Ifvi
or 5 V1S negative, (] - 2‘)

i JA(] 2v) ~ 2G (1 tVv)
Now both A and G must be posiive quantities. He
3 > . » s 2 y
R H S is positive Hence I__H.S. must be positive o (1-2v)
will be positive and hence (1 + v) must be positive, or v = 1. Hence the theoretical limits to the value

|. In actual pra

ol v are ! and ctice, v 1s always 3 positive quantity and hes between 0 and .5
)

F.x:lmpI(- 4: Calewlate G and v for silver. given E and K for silver = 7.25 x 10" Nm? gngq

11 % 10" Nm™ ,

£ =725x10°0Nm?;K=11x 10°°Nm?:G="?

Here,
9 GK
E =
sk K+ G
G- SKE__ 3(11x109) (7.25%10'%)
9K —E 9(11x10)—(7.25x10")
~2607 x 10'°Nm 2.
Here, E:725110“’Nm-’;G=2‘607><IO'ONm:’;v=?

. 10
oo g TR g spg9i-1=038E
G 2x(2.607x10')

v

1.8. DETERMINATION OF POISSON'S RATIO v FOR RUBBER

A rubber tube R (like a cycle tyre) about 1 min length and 2 cm 1n
diameter is taken. It 1s suspended n a vertical position as shown in Fig.
1.6. The ends A and B are tightly closed with rubber corks. A graduated

glass capillary tube (G) open at both ends is inserted inside the rubber
tube through the upper end A. The rubber tube is completely filled with
water till water nises in the tube G. A pointer P is fixed to the lower end
B of the rubber tube. The lower end B carries a pan with weights (/).
When conditions become steady, the positions of the water meniscus
in G and the pointer P are noted with the help of two separate travelling R
microscopes. When a suitable weight () 1s placed in the scale pan, the
length of rubber tube increases and its area of cross-section decreases. The
internal volume of the tube also increases. Consequently, the water level
in G falls. The increase in the length of the tube is determined by noting
the position of the pointer P in the microscope. The increase in volume
is determined by noting the water level in the tube G. v can be calculated
by using the formula proved below
Relation. Let L, D, A and ' be the respective initial values of length,
diameter. area of cross-section and internal volume of the rubber tube. I

Then, V=A4xL.

I
1
I
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Fig. 1.6
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When the load 1s apphed, let ¢)
(he decrease 1n area of cross-section
New volume

be the increase in volume, L the increase in length and dA

=V+dV=(4-dd)(L+dL)
=AL-LdA+ AdL
AdL - [ dd

2
Also we know that 4 = "D or dyDdD

(Neglecting the term dA * dL)
(1)

dv

2
24
or dA = (——) dD -
= (2)
Substituting this value of d4 in Eq. (1)
dV = AdL-(£ﬂ)dD or lﬂ:]_£5’2
D dL D dL
or _]_dl =1_2.d.D.fD_
A dL dL/L
& dD/D _ Lateral strain
ut, L =v
dL/L Longitudinal strain
ol e o
A dL
1 1 dv
- yv=—|1-2< (3
2 [ A dle -
TORSION

1.9. TORSION OF A BODY

When a body is fixed at one end and twisted about its axis by means of a torque at the other end,

the body 1s said to be under torsion. Torsion involves shearing strain and so the modulus involved
is the rigidity modulus.

Torsion of a cylinder-Expression for torque per unit Twist

Consider a cylindrical wire of length L and radius a fixed at its upper end and twisted through an
angle 0 by applying a torque at the lower end. Consider the cylinder to consist of an infinite number
of hollow co-axial cylinders. Consider one such cylinder of radius x and thickness dx [Fig. 1.7(i)).

(i)

Fig. 1.7
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\ line such as 48 intally parallel to the axis OO of the L‘ylmm
15" through an angle ¢ due to the twisting torque [Fig. 1.7(ii)]. The result of Wis(p [(;, - POsitje
a shear strain. The angle of shear = - BAB' = ¢. ' Ctylmde' ';

Now BB =x0=Lpord=x0/L

Shearing stress
We have, rigidity modulus = G = ————————
Angle of shear (¢)

shearing stress =G ¢ = Gy 0/L
Shearing force
Area on which the force acts

But, shearing stress =

Shearing force = Shearing stress x Area on which the force acts,

I'he area over which the shearing force acts = 2r x dx

Gx0

Hence, the shearing force = F = x 2mx dx
Thc moment of thls Gx0 27GO
force about the axis ; = 2exde.x= x~ dx

00" of the cylinder

Twisting torque on} o ]— 2nGO o

the whole cyhnder 5§ L

nGa'o
2L

The torque per unit twist (ie.,| G a’

the torque when 0 = [ radian) Y]

Note 1: When an external torque is applied on the cylinder to twist it, at once an Internal
lorque, due to elastic forces, comes into play. In the equilibrium position, these two torques will be
equal and opposite.

Note 2: If the matenal is in the form of a hollow cylinder of internal radius @ and extema]
radius b, then,

or =

The torque acting| "2nGo 3 nGo
on the cylinder } ! C:J' x = - b* - a*)

o
Torque per unit twist = ¢ = 1 (b* - a*)(2L)
) E-\"'"_'Plc ¥ W:;al torque must be applied to a wire one metre long, 107 metre in diameter in
order to twist one end of it through 90°, the other end remaini 2 i i,
afhe nirefe 245 6 Mk emaining fixed ? The rigidity of the material
Here,L=1m;G=28x 190 3.
; HE o Nm ’”‘——2— m=0.5x 10" m; 0 =90° = /2 radians :

nGal s m(28x10")0.5x 10! V..

4.318 x 103 Nm

Ex'am ple 6 A (‘/rcfu‘lar bar one metre long and § = 107 mietre dlcvieter Is rigldh clamped &
one end in a vertical position. A torque of magnitude 2.5 N is 4 lied at the oth g d I' it
a mirror ficed at this end deflects a spot of light 5 0.15 mer ipplied at the other end. As a resull,
the modulus of rigidity of the bar : etresonas

C=

]

cale one metre away Calculate



pastoty

11

For a twist O, the murror tums through 0. and the reflected beam through 20. If the deflection

s d on a scale D away, 20D = dor @ - d i3

— =" =0.075 radians:
2D 2x|

Here. C=25Nm.a=4x10'm.:0=007Sradians: L=1m:G="?
Hence. C=nGd*02Lor G=C 2L/n a*0

% €
-y G = A3x 2wl

—————=8.290x10'" Nm™*
n(dx10 )" (0.075)

Example 7: 4 steel wire of diameter 3.6 x 10+ m and length 4 m extends by 1.8 x 10° m

under a load of 1 kg and twists by | 2 radians when subjected to a total torsional torque of 4 * 103
\N'm al one end Find the values ()fE, G and v fOI‘ sieel

We have, E = Fid4_FL
Here, F=mg=1x98=98N:L=4m:
A=na=n(18x10%’ m2and /=18 102 m.
E= 98x4
n(1.8x10*) x1.8x10°?

=2.139x%10"" Nm?

Torque which must be applied

4
to twist one end of the wire =C= xGa o
through an angle 0 radians 2L

or G =C2L/na'0

Here,

C=4x10°Nm;L=4m;a=18x10"m;
0 = 1.2 radians

C2L  (4x10%)x2x4
na'® m(1.8x107) x12

=0.8083x10"" Nm2

E 2.139 x 10"

v==-ls T
2G 2x0.8083x10

Example 8: Explain why a hollow rod is a better shaft than a solid one of the same mass,
length and material

—1=1.329-1=0.323.

Consider a solid cylinder of length L, radius r and shear modulus G.
The torque required to twist the | _ = Gr'o )
solid cylinder through an angle 6 A 1L

Let r, and r, be the inner and outer radii of the hollow cylinder of the same length, mass and
material. 1

Then the torque required to twist it through the same angle 6 is
nG(r' -nr)e

C, = Ll 2)
5 2L
C r," - rl4 (rz2 + rlz) (rz2 - rlz)
Hence, -2 =2 o= 4
G r r

Since the two cylinders have the same mass,
n(rt-rMilp=n r~lp
(Where p is the density of the material of the cvlinders).




12 - # ()p‘,n",a o
] [ £® ! .’ ! B M .'_
)
Adding 2r "~ 1o botls sides, ry® tr =V av 0
( (r' +2n° )71 re o ]
Hence, l :
( | ¥ /
( 2n
ol | 4
( ’

C, >0 la the twisting torque for a hollow cylinder is greater than that fur 4 solid yl
) \ » & . b ‘ l
of the same mass, length and material Hence a hollow cyhnder is stronger and a better shafi lhm
an

sohid one of the same mass, length and matenal
1.10. DETERMINATION OF RIGIDITY MODULUS—STATIC TORSION METHOD -~

Searle’s apparatus ; The experimental rod 15 ripidly
fixed at one end A and fitted into the axle ol a wheel W at
the other end B (Fig. 1.8). The wheel is provided with a
grooved edge over which passes a tapc. The tape carries
a weight hanger at its free end. The rod can be twisted by
adding weights to the hanger The angle of twist can be
measured by means of two pointers fixed at Q and £ which
move over circular scales §, and S, The scales are marked
in degrees with centre zero

With no weights on the hanger, the initial readings of
the pointers on the scales are adjusted 1o be zero. Loads are
added in steps of m kg (conveniently 0.2 kg). The readings Fig, 1.8
on the two scales are noted for every load, both while '
loading and unloading. The experiment is repeated after reversing the twisting torque by winding
the tape over the wheel in the opposite way. The observations are tabulated.

The readings in the last column give the twist for a load of Mkg for the length QR (= L) of the rod

The radius a of the rod and the radius K of the wheel are measured.
If a load of M kg 1s suspended from the free end of the tape, the twisting torque = MgR.

The angle of twist = 0 degrees = 0. n/180 radians.

‘ - n G u“ On
The restoring torque = ———— - —.
2L 180

nGa'0.n G 30MgRL

For equilibrium, MeR = ——— —— oOr = —
q & 2L 180 ! a'0

Since a oceurs in the fourth power in the relation used, it should be measured very accurately.
Notes: (1) We eliminate the error due to the eccentricity of the wheel by applying the torque
in both clockwise and anticlockwise directions.
(2) We climinate errors due (o any slipping at the clamped end by observing readings at two
points on the rod.
1.51. DETERMINATION OF RIGIDITY MODULUS—STATIC TORSION METHOD.
(SEARLE’S APPARATUS—SCALE AND TELESCOPE)

A plane mirror strip is fixed to the rod at a distance L from the fixed end of the rod [Fig. 1.9]
A vertical scale (5) and telescope (T) are arranged in front of the mirror. The telescope is focussed
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that the reflected image of <%

h the telescope With
inger, the reading of

on the mirror and adjusted so
the scale in the mirror is seen throug N
some dead load W on the weight-he
the scale division comciding with the horzontal cross-
wire 1s taken Weights are added in steps of m kg and the
corresponding scale readings are taken. Weights are then
decreased continuously m steps of n kg and the readings
taken agamn. The torque is rey ersed now, by passig the
tape antclockwise on the wheel. The readings are taken
as before. From these readings, the shiftin scale reading

¥ I

|

T

T

(+) tor a load m kg 1s found
I'he length 2 of the rod from the fixed end to the mirtor is measured. The mean radius o of (h
The radius (R) of the wheel is found by measury,

rod 1s accurately measured with a screw gauge.
its circumference with a thread. The distance (D) between the scale and the mirror 1s measured wy

a metre scale.

dmg R L Q

G 15 calculated using the formuln G = ——+—1—
na.y

Tolescope Reading N ~¥ Shifi ”,T”:::

Load in kg Torque clockwise Torque anticlockwise = reading fon
Loading | Unloadmg | Mean (X) Loading | Unloading | Mean (V) : el

1} i
W+m
W+ 2m
W+ 3m
Hidm
W+3m
I+ 6m
W+ 7Tm

1.12. WORK DONE IN TWISTING A WIRE
Consider a cylindrical wire of length L and radius a fixed at its upper end and twisted through

an angle 0 by applying a torque at the lower end.
If ¢ is the torque per unit angular twist of the wire, then the toraue required to produce a twist

0 in the wire 1s

C=c0,
The work done in twisting the wire through a small angle 0 is
Cdo = c0do.

The lglal work done in twisting| _ ,, }(1.9 40
the wire through an angle 0 :

%
“

W=-c.0

| —

or

The work done in twisting the wire is stored up in the wire as potential energy.
Example 9: Find the amount of work done in twisting a steel wire of radius 10 m and 0
() 25 m through an angle of 45°. Given G for steel = 8 x 1010 Nm 2

I o lnrGa' nGa'

» have, We e a2 g 4 i
We ha : T y 5

length




Elasticity

— 15
Here. G =8x g0 Nm?:4=109p y0=45°= /4 rad -
L=025m
I @x10") 0%y 3
P 8 O n4
ol -—-7-—l_(-—)—: 0.1550J.
4 2x0.25

1.13. TORSIONAL OSCILLATIONS OFABODY e
Suppose a wire is clamped vertic e ——

bar or a cylinder) of moment of inery 1a

modulus of the wire be respective

ally at one end and the other end carries a body (i.¢., a disc,
I'about the wire as (he axts. Let the length, radius and rigidity

ly/,aand G When the bod | ' i
‘ . Wi ~ Y 1s given a shight rotation by applying a
torque, say by the hand, the wire i5 twisted. I (he body 1s released, the body oscillates in the horizontal

ut the wire as axis. These oce:lar
plane abc : St oscillations are called Torsional oscillations

: illations and the arrangeme
is known as a Torsion pendulum. PR

Let us consider the ener

gy of the vibrating system wh th ist i
TR el i y en the angle of twist is 0. Let w be the

The potential energy of the wire due to the twist = 1 c.0?
b
The kinetic energy of the 1. o 0 fgey?
. ; = = I == ] 22
body due (o its rotation 2 2 ( dr )
The total energy o 1 fgei y 2
of the system 5 L (}7) ¥ 9 ¢0” = constant

Differentiating this with respect to ¢,

~12—. —+_c202
2 dt de? 2( t
2 2 ,
or 15"——?+c9=00r9’—?+ie=0
dr* dt

The body has simple harmonic motion and its period is given by

T= Zn\/z
v

Rigidity modulus by Torsion pendulum (Dynamic torsion ———__l|
method) : %

The torsion pendulum consists of a wire with one end fixed in a split
chuck and the other end to the centre of a circular disc as in Fig. 1.10.

Two equal symmetrical masses (each equal to m) are placed along a
diameter of the disc at equal distances d, on either side of the centre of the
disc. The disc is rotated through an angle and is then released. The system
txecutes torsional oscillations about the axis of the wire. The period of
oscillations T, is determined.

- /)
i hien T g [~
o
2 42
or IAs L 1. Fig. 1.10

c
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| about the axis of the wire and

. » gystem
Here. / Moment of mertia of the » hole sy

torque per unit fwist
of the wire

e dise alone aboul the axis |
| et , M1 ol the di alone ]I\I'Uli[.!h s centre ol grﬂ\/ﬂy

. ; passing
M | of cach mass about a parallel axis P g
arallel axes theorem.
¢ 21+ 2md
[, =gt 4 ,
y Jn‘ N % ’1'" ‘/.‘I
e A | )

¢

"

[hen by the p

at equal distances d. from the centre of the disc ang (he

The two masses are now kept !
stermine en,
corresponding period T, 18 determined. 1

7 = 4 (1, 20+ 2] o
2 p
.., 4 (dY -d?) i
r 2T - — 2m - (d,” —d )
- C
But ¢ =n Ga'l2L
4 2m (d? -d)2L
Hence il Sl 7—#(;”4
G - 16 m Lm (0'22 =gh*)
or J 04 (Tzz B 7]2)

Using this relation, G 15 determined.
ML of the disc by torsional oscillations.

T, is found when the disc alone 1s vibrating. Then,
2 2
4n 0
Tl=——1I; or ly=—7
U -
¢ 4n

The two equal masses are removed and the period

()

From (3 4’ 2m(dy’ —d’)
rom (3), ¢ Tzz 3 le

|

anlomd?-dY) T 2m(d? -d}) T
Hence k= S c——= S
T -1, 47’ L -T

From this relation, the moment of inertia of the disc about the axis
of the wire is calculated. EPT
Maxwell’s needle: Maxwell's needle consists of a hollow metal
tube suspended from a torsion head T by a wire whose rigidity modulus
is required Two solid and two hollow cylinders of equal lengths exactly
fit into the tube The length of each cylinder is equal to one quarter of
the length of the needle. e
The solid cylinders (S and S) are first placed in the inner position 7Y
and the hollow cylinders (H and H) at the end as shown in Fi a /S/ /§A i
. 1ig. 1L11(G). Llr il
TI'he needle 1s then rotated through a small angle about the wire as axis ()
and let go The system oscillates torsionally about the wire as axis
and the tme peniod 7, is found. The positions of the solid and hollow 7% /
cylinders are then interchanged [Fig. 1.11(i)] and the peri torsi /i W
period of torsional [ 2,
oscillatons 7, 1s found. The length of the wire (L) and the radius of the (i)
wire (a) are also measured. Fig. 1.11
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clastely_

Let 1, = ML of the hollow tube abou( the WIre as axis,
i, = ML of the solid cylinder
wire

about an axis through its C.G parallel to the axis of the

i, = M.L of the hollow cylinder abouyt

2 an axis through 1ts C.G. parallel to the axis of the
wire,

m, = mass of the solid cylinder,
m, = mass of the hollow cylinder,

d = the length of each cylinder.
Then, the M.L. /, of the system abou( the axis of the wire in the first case is given by,
b=y 4 2i, +2i, + 2m, (di2)* + 2m, (3d/2) (1)
Further, T 1= 211\/}7(—- or T\ = 4n?/ /c -(2)
Similarly, the M.]. 1, of the system about the axis of the wire in the second case is given by,
L~ 2i Y 2iy + 2m, (dI2)? + 2m, (3d/2)? A3}
and T2 =4n? Lie (4)

2
Subtracting (2) from (4), 7‘22 - T|2 = in_ (1, - 1)
e v
Now, subtracting (1) from (3)
\ L-1, =4d (m, - m,) and ¢ = n Ga*/2L

2
Hence, Tt~ le = M

32n Ld’? (my —m,)

or G = R

Example 10: 4 metal disc of 0.1 m radius and mass 1 kg is suspended in a horizontal plane
by a vertical wire attached 1o its centre. If the diameter of the wire is 10 m, its length [ m, and the
period of torsional vibrations is 4 seconds, Sind the rigidity modulus of the wire.

The metal disc executes torsional oscillations about the axis of the wire. Hence
T=2nylfc or T? =4z’ J/c,
where / = moment of inertia of the disc about the axis of the wire and
¢ = torque per unit twist = 1 Ga*/2 L.
, h
T = 4n'———{-,——— or G= :“'j“
(nGa”/2 L) T a
Here, / = MR?/2 [where M = mass of the disc = | kg and R = radius of the disc = 0 | m]
g =1x(0.1)%2 = 0.005 kg m.
L =Lengthofthewire=1m;a=05x 10 m:T=4s
8niL 8m(0.005)x]
G 8 = 3.4
T°a 4°(0.5x 10 °)

=1.256 x10"" Nm™2

Example 11: A steel bar is suspended in a horizontal position by a vertical wire attached to
s centre. A horizontal torque of moment 5 Nm twists the bar horizontally through an angle of ]2°

, 3 : |
When the bay i released, it oscillates as a torsion pendulum with a period of ot B Determine the

moment of inertia.

;
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W —
. -
roduces a twist of 12 or 12 x 2/180 rad = 0.209¢ 2 M,
e Tad

A torque of moment SNmp
gt =0 5/0.2090 = 23 .88 Nm.

7= 2nlfc or T =dn* lic

Torque per unit (W
Period of oscillation =

‘ Moment of inertia = [=cTAn.
Here, ¢ =23.88 Nm, T=05s
| | = (23.88) (0.5)74n* = 0.1513 kg m”.

snspc’nded s_-,mnnerri(ally from the lower end of a wire, |
i o G s )
tes about the wire as axis with a period of 1.25 second ! ;On
b .0 10 ) . L o s
ire is 8 * 10°" Nm =, calculate the moment of ine S ike

Example 12: 4 body,
122 % 107 m in diameier, oscilla
modulus of rigidity of the material of the

the body about the axis of rotation.
The body executes torsional oscillations about the axis of the wire with a time-periog

T=2nm

Tlia of

where /= M.1. of the body about the axis of the wire or the axis of rotation and

¢ = torque per unit twist = rG . a*/2L.
Hence T2 = 4n? llc.
C ) T[Ga4
1=7"—=T" _
i 4’ 2L 4 1’
_ T'Ga’
8§nl
2 10 <o
Hence ]= (1.25)°(8x10") (0.61x107")
8mx1
- 6.885 x 10~ kg m’.
BENDING OF BEAMS
1.14. DEFINITIONS e —

Beam : A beam is defined as a rod or bar of uniform cross-section (circular or rectangular)
whose length is very much greater than its thickness.
Bending Couple : If a beam is fixed at one end and loaded at
the other end, it bends. The load acting vertically downwards at its free 1
end and lhe reaction at the support acting vertically upwards constitute
the bending ‘couple. This couple tends to bend the beam clockwise.
Since there is no rotation of the beam, the external bending couple
musl be bz‘ilar']ced by another equal and opposite couple which comes
into play ms@e the body due to the elastic nature of the body. The
moment of this elastic couple is called the internal bending moment
When the beam is in equilibrium, -
the external bending moment = the internal bending moment
Plane of ing : Ing | .
e )|elze':,d'mgh' The plane ofbendmg is the plane in which the bending takes plac
: : pl cts in this plane. In Fig. 1.12, the plane of paper is the plane of bending.
e H . 4 -
Sl ool A Gl o i O i
s like cd in the lower part are compressed. Therefore, there md

Fig. 1.12

¢ and the

rt of the
st he

'O
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jlament like ¢/ n between. which is neither elongated nor compressed. Such a filament 1s knorm
a ' . . &
the neutral flament and the axis of the beam lying on the neutral filament is the neutral axis. The
a5 , : ! . ,
hange I length of any filament is proportional to the distance of the filament from the neutral axis.
[N

1.15.EXPRESSION FOR THE BENDING MOMENT =

Consider a portion of the beam to be bent into a circular arc.
as shown 10 Fig. 1.13. ¢/ 1s the neutral axis Let R be the radius of
curvature of the neutral axis and 0 the angle subtended by it at its
centre of curvature ¢

Filaments above ¢f are elongated while filaments below ef are
compressed. The filament ¢f remains unchanged in length.

Let a'd’ be a filament at a distance = from the neutral axis.
The length of this filament &5 before bending 1s equal to that of the

corresponding filament on the neutral axis ab.
We have, onginal length = ab = R0.
ts extended length =a'd’ = (R+ ) 0
Increase in its length =a't’ —ab=(R+:)0-RO=2.0.

Increase in length
onginal length

Linear strain =

.0 1z
0 R
If £ is the Young's modulus of the material,
E = Stress/Linear strain
ie. Stress = E x Linear strain = E (z/R)
1f 84 1s the area of cross-section of the filament,

. . P
the tensile force on the area 84 = stress x area = o OA.

Moment of this force about the neutral axis ef

E B ,
= SA,z=£¢SA.:'.
R
The sum of the moments of o )
. =L —04.z
forces acting on all the filaments R
=Z554.2
R

L84 . 2% is called the geometrical moment of inertia of the cross-section of the beam about
an axis through its centre perpendicular to the plane of bending. It is written as equal to 4K . i.e.,
L84 . 2> = Ak, (A = Area of cross-section and k = radius of gyration).

But the sum of moments of forces acting on all the filaments is the internal bending moment
which comes into play due to elasticity.

Thus, bending moment of a beam = EAK*/R.

Notes : (i) For a rectangular beam of breadth b, and depth (thickness) d, 4 = bd and
F=dn2. :

AK? = bd*/12.
(if) For a beam of circular cross-section of radius r, 4 =  +* and k* = /4.
; Ak® = /4.

(it1) EAK? is called the flexural rigidity of the beam.

'
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|\ 16. DEPRESSION OF THE LOADED END OF A cmuwu.ewzm\wnE
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Cantilever : A cantilever 15 @ beam fixed horizontally at o

one end and loaded at the other end.
1 et OA be acantilever of length /

a weight 1 at the other end. OA"1s the 5
bc.m{ et the depression A'A of the free end be y (Fig. 1.14). Lel
us consider an element PQ of the beam oflcngtl) dx at a distance
(04 = x) from the loaded end. C'18 the centre of curvature of the
element PO and R its radius of curvature. The load W at A and
the force c;—{ reaction IV at Q constitute the external couple, so
that. the external bending moment = W.% :
The internal bending moment = EAKYR . v b
For equilibrium, Wx = EA KR or R = EA I2/Wx b

(s at P and O meeting the vertical line at 7" and § respectively. Let 75 < d“
=d

fixed at O and loaded with
unstrained position of the

A1)

Draw tangen
a0 = Angle between the tangens. Then, ZPCQ also = do. iy
_dx Wx
Now, PQ=d‘(-RdOOl'd9—F-dx-EAk2 (FTOmEq‘IJ
Wxde Wx* dx
- dy =xdd=x. — =
We have, y =X TR i

the total depression of | _  _ :'[ Wx? = wr
the end of the cantilever Y ) E A I 3E A k2

Angle between the tangents at the ends of a cantilever :

Since the beam is fixed horizontally at O, the tangent at O is horizontal. If a tangent is draw
at A (the free end of the bent bar), it makes an angle 0 with the horizontal.

Angle between the | _ . Wx
tangents at P and Q} s A

Angle between (he} _ o ]- Wx e
tangents at O and B
gents at O and 4 : E AK?
o= Wi |
2E A k*

Work done in uniform bending. Consider a beam bent uniformly by an external couple. Let

be the area of cross-section of th '
e beam. Consider a filament o ross-secti Istane
z from the neutral axis (Fig. 1.13). Then e o el

the tensile force on the area §4 = Ez 84

The linear strain of this filament = i
_ . =2/R. 1f I is th ]
i extéigion ofihe Blammast= 7 e length of the filament, then,

The work done in ]
bending the filament| ~ 5 force * extension
2 | Ez zl ]
=1£z z El
2 R SAXE"‘-ER-:,xz‘ L BA.
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For uniform bending R is constany. Hence, the work done in bending the whole beam 15
- S : s
;*——,-Zz‘ﬁAzlExAk‘:-]—EAk x_l_
2 R 2 B 2 R R

Here, EAKY/R = the bending moment and /g -

the angle subtended by the bent beam at its
centre of curvature.

. The work done in uniform bending = 5 (bending moment) ~ (Angle subiended by the bent

heam at its centre of curvature),

Example 13 : Obtain an expression Jor the depression at the free end of a heavy beam clamped
porizontally at one end and loaded a; the other end

Consider an element PQ of (he beam o
1.14). Now, in addition to the load W actin
beam also acts at its mid-point. Le W, be
of the beam = W,/ Now, we have an addit
0. Therefore,

total moment of the

[ length dx at a distance x from the fixed end O (Fig.
g al 4, a weight equal to that of the portion (/ - x) of the
the weight of the beam. Then, the weight per unit length
10nal weight W, (I -x)/l acting at a distance (/ - )2 from

" W, (/- x)
=W(l-x)+ 21— )
exlernal couple applicd} (1-9 / (/- x) 5
W
=W(l-x)+ L (-2
(I~u 5 (/ - x)

The beam being in equilibrium, this must be balanced by the bending moment Ak R. Therefore.

W, 4L 2 2
W(I_X)+2_;(12—21.x+xz) = L‘j: =EAk2(d }J

&
Integrating,

2 3
W(lx—x—]+m(.’2.x—l.12+5—J - Y., c
2) A 3 &

where C' is a constant of integration.
Since at x =0, dy/dx = 0, we have C = 0.
Integrating once again,

¥ ! Wl .
EAK? Idy =W I(I.r-.xz/Z)th + -1 I(l'x—l.r‘ +x'/3) d
0 0 2 0

3 4
or EAly = W(.[_.]+ fVl[f-J
3) 24
or EAk?y = .y +’—y'—’-]’
Ty g
3
or yz(;y+zw|)___l__;
8 ')3E 4k
117.MEASUREMENT OF E

(1) Cantilever depression : The given beam 1s clamped rigidly at one end (F ig. 1.15) A weight-
"(H) 1s suspended at the free end of the beam. A pin (P) is fixed vertically by some wax at the

.

ange
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iree end of the beam. A travelling MICTUSCOPE (M) —_ el P |

| i - S
" 18 usted ——— e
ussed on the pin I'he microscope 18 adjus -~ s

wire comeide
¢ vertical

so that the horizontal ¢ross s with
of the pin and the reading on th
f the microscope 1s noted Then weights .
ded to the weight-hanger
ach time to make the _

horizomtal cross-wire comeide with the up of the pin

and the reading on the vertical scale of the miCTOSCOPE | ‘
are tabulated as follows:

L Hi‘

SCALR L

\

2m, Am 4 m, etc,, are ad
he MICroscope 18 adiusted ¢

¢ 1s noted 1n each case. Observations are Mad,

for decreasing loads also The results
oy Microscope Reading Depr‘es.won Mean. ]
‘ { Jor depression for 4
B e e s M=4m) | load of Mig
increasing decreasing Migy
W X
W+ m 5
W+ 2m %,
W+ 3m %
W+ dm X, % —
W+ 8m X Xg— X,
W+ 6m X X =%
W+ Tm ' Xy =X

The mean depression () for a load M kg 1s found.
The length of the beam (/) between the clamped end and the loaded end is measured. The mean
breadth () of the beam and 1s mean thickness (d) are determined.

If y 15 the depression produced for a load of Mg, then,
Me P P
JEAk 34k°y

Now, Ak? = bd’/12 for a rectangular beam.
_ Mgl AaMgl
3bd*/12)y  bdly

The Young’s modulus of the material of the beam is calculated using this relation.
(2) E - by measuring the tilt in a loaded cantilever.

The given rectangular beam is rigi i '

at the free end [Fig. 1.16]. Aweighbhanggjgrl )(/}3;5:;“;3::‘::;32‘: RO RIRO S
the free end of the beam. A vertical scale (S) and telescope (7) i
are arranged in front of the mirror. The telescope is focussed
so that the image of the vertical scale due to reflection il:l. the
murror is obtained in the telescope. The reading on the scal
which coincides with the horizontal cross-wire is noted. Th X
weights m, 2 m, 3 m, 4 metc., are added to the wel ht-l; o
and the readings of the scale as observed in the telgesc s
noted in each case. Observations are made e e

loads also. The results are tabulated as follo

Hence,

for decreasing
WS
A Fig. 1.16




cumty_ o =
r"”f Readings on the s ale

Load in kg Load

Change in scale
Load 2 ding for M k
reasi : dean reading for
increasing decreasing R £
praspmmtE=

The average of the readings in the last column
a load of M kg. The distance D between
tckness (d) of the beam are

gives the mean change in scale reading s for

the mirror and the scale is found. The breadth (b) and the

accurately measured.
The angle between the two ends

L
of the centilever for a load of M kg =0= 5 (1)
Mg . I 2 3
» i —*g*T:_A_J%—— (SinceAk2 =M_]
2EAK* 2E .bd’/12 12
6 Mgl*
i f (2)
bd"E
2 2
From (1) and (2), = = SM&.I" = - 12Mg .I’D
2D bd*E bd’s

1.18. OSCILLATIONS OF A CANTILEVER

Let OA be a cantilever of length /, of negligible mass fixedat O
0.Leta mass Mbe attached at the other end 4 (Fig. 1.17). If the mass

is slightly depressed and then released, the cantilever will execute
simple harmonic motion about its original depressed position.

The depression of the loaded end of the cantilever is

wr

¥ = = A
3E Ak

BB EAR? v

This must be equal to the elastic reaction of the cantilever balancing it and hence directed
opposite to it.

If Mis the mass of the weight W and d%y/df?, the acceleration (upwards), we have,

d2
elastic reaction = M ——5)-1
dt
d’y _3EAK
" d*y z—3EAk2y
dr? Mr?
2
But, 3EAK A constant
MP
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8 of Ma“er

antilever IS—\

thus Proportiony 4
Ilg

[he acceleration of mass M or the free end of the ¢
displacement and 1s directed opposite (o i
It. therefore, executes a S.H.M. of ume period 7, given by

s e

ook i —
7“2nﬁ)}—]—)lacc'ﬂ=2n j Y —=2n\/ Ml :
Acceleration [JEA A k27 )IJ IE Ak

O

he cantilever 1s not negligible, it can be shown that,

1 3
“m |l
(M+3 J

3E Ak

If the mass of t

where m = mass of the cantilever,

T=2n

inated by finding the periods T and T, for two differey,

The mass of the cantilever can be elim
{ the same length. Then,

masses Ml and M, attached to the cantilever a

(M, + 1m)!’ (M; sl m)/3
n’ 3 and T} = 4n’ e
3E Ak? 3E Ak?

y 2_4n2(M2—M1)l3
a LT =34l

_ 4n’ (M, =M B
3Ak2 (7-22 _7’;2)

Experiment : The given beam is rigidly clamped at O. A certain load of M, kg is suspended from
the other end A. The beam is set in transverse oscillations and the time for 25 oscillations is found
From this the period of oscillation T is calculated. Similarly, the period T, with a load M, 1s found
g Ant My - M) P

3AK (T} - T7)

We have,

For a rectangular bar, 46> = bd*/12 .
_len® I’ (M, - M)
bd’ (T} ~T)

The length of the cantilever /, the breadth b and depth d are measured. E is calculated using
the above formula.

Example 14 : 4 steel bar, 0.3 m long, 2 x1072 m broad and 2 x 107 m thick is clamped di
one end and loaded at the other with a mass of 0.01 kg. Calculate the period of vibration of the bar
neglecting the effect of weight of the bar. (E for steel = 20 x 10'° Nm>).

For a cantilever of length /, loaded M
with a mass M, period of vibration S A IE Ak?

Here, /=03m,M=001kg;E=20x10'"Nm

Hence,

AR =bdP12=2 % 10?) (2 x 10%)/12 = §x 107"
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— (00hx 3’
3% (20 lO“’)x(4 x 10'”)
3

T=2n =0.0365 second

1.19. DEPRESSION AT THE MID-POINT OF A BEAM LOADED AT THE MIDDLE ——

Let AB represent a beam of length /, su i o )

t A and B and loaded with : > »PPoried op tyvorlifo- A a
edges @ y . a weight, W at the centre C. The ! A
ceaction at each knife-edge is /2 acting vertically upwards The G Lt s h:

beam bends as shown in Fig. 1,18, the depression being maximum at i |
I

the centre. The bending 1s non-uniform. Let ¢p = Yoo SN g —- ?9 ----- :
. : |
The portion DA of the beam may be considered as a cantilever :

oflength /2. fixed at D and bending upwards under aload W/2. Hence ~ A D ]
the elevation of 4 above D or, N
the depression of D below 4 =y = W22y - wr Figmll.ls
3EAL? 48 EAK?
Note : The inclination of the tangent at the points 4 and B is given by
2
tan O = . = Wi
dx 16 EAk®
Since 0 1s small, tan 6 =0,
2
g = Wi
16 EA K’
1.20. UNIFORM BENDING OF A BEAM
W
W

Consider a beam of negligible mass supported symmetrically
on two knife-edges 4 and B in a horizontal level (Fig. 1.19). Let
AB=1.

Let equal weights W, W be added to the beam at its ends Cand €
D.Let AC = BD = a. Then the beam is bent into an arc of a circle. The
reactions on the knife-edges will then be W and W, acting vertically

) : i w W
upwards. Consider the cross-section of the beam at any point P. The Fig. 1.19
only forces acting on the part PC of the bea(n are the forces W at C
and the reaction Wat A.

The external bending moment with respect to P
=W.CP-W.AP=W(CP-AP)=W . AC= Wa.

This must be balanced by the internal bending moment EAK*/R.

Hence, Wa = EAK*R (D
Since for a given lodd W, E, a and Ak? are constant, R is a constant. The E
bending is then said to be uniform. If y is the elevation of the mid-point of AB A m .
tbove its normal position (Fig. 1.20), ; L .

EF (2R - EF) = AF?

y (2R —y) = (I12)
y.2R = P/4 (v y? is negligible)

y = PI8R Fig, 1.20
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1.21. MEASUREMENT OF YOUNG'S MODULUS—BY BENDING OF A BEAM /=

(1) Non-uniform Bending : The given beam is

symmetrically supported on (two knife-edges (F1g. .2 I)" ==
A weight-hanger 1s suspended by means of a loop ol L

thread from the point € exactly midway between the
knife-edges. A pin is fixed vertically at €' by some i
A travelling microscope 15 focussed on the tip of the pin
such that the horizontal cross-wire comncides with the tip / w /
of the pin. The reading in the vertical traverse scale of -—J Fig. 1.21 —J

microscope is noted. Weights are added in equal steps of . |
m kg and the corresponding readings are noted. Similarly, readings are noted while unloading. Th

results are tabulated as follows :

Readings of the microscope for Mk
n kg or
kil Load increasing | Load decreasing Mean Y g

n y is found for a load of M kg. The length of the beam (/) between the

The mean depressio
he breadth 4 and the thickness d of the beam are measured with a vernier

knife-edges is measured. T
calipers and screw gauge respectively.

78 wr?
Then, y=—7T70or&= =
48 EA k 48 Ak’y
Mg P
or = -+ W= Mg and AK* = bd’/12
48 x (bd’ /12)x y ( e i
_ Mgi3
4bd’y

Example 15 : In an experiment a rod of diameter 0.0126 m was supported on two knife-edges,
placed 0.7 metre apari. On applying a load of 0.9 kg exactly midway between the knife-edges. the
depression on the middle point was observed 1o be 0.00025 m. Calculate the Young § modulus of the
substance.
Mgl>  (0.9)(9.8)(0.7)’

12ynrt 12 (0.00025) 7 (0.0063)*

c E =2.039 x 10" Nm
. (2) Uniform bending : The given beam is supported symmetrically on two knife-edges A and
B (Fig. 1.22). Two eqpal weight-hangers are suspended, so that their distances from the kinfe-edges
are.cqual. The elevations of the centre of the beam may be measured accurately by using a single
optic level (L). The front leg of the single optic lever rests on the centre of the loaded beam and the

E =
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gtsL— e
i legs are supported on a separate stand.
: ertical scale (.?‘) and lclcs:copc (T) are
;mm gedin front of l-hc mirror. F he telescope
i t‘ocussed on the mirror and adjusted so (hat
1§ , reflected image of the scale in the mirror
d.]:cen through the telescope. The load op 4
‘.’m‘:h hanger 15 increased in equal steps of T
:n kg and the corr_espondm g readings on the

ale are noted. Similarly, readings are noted

while unloading. The results are tabulated

as follows Fig. 1.22

S

ey Readings of the sc .
Load in kg 85 of the scale as seen in the telescope Shift in reading
Load increasing | Load decr easing Mean Sfor M kg

.

The shift in scale reading for M kg is found from the table. Let it be S. If
D = The distance between the scale and the mirror,

x=the distance between the front leg and the plane containing the two hind legs of the optic lever,

then y =8x/2D.

The length of the beam / between the knife-edges, and a,
suspension of the load and the nearer knife-edge (4C = BD =
thickness d of the beam are also measured.

Wal? ) 2
Then, R4 A i Sx Mgal

"854k ” 2D 3EGLND
[Since W = Mg and Ak* = b d?/12]
3 Mgal’D
- Sxbd”

‘ Pin and Microscope Method : The given beam is supported symmetrically on two knife-edges A

- and B. Two equal weight-hangers are suspended so that their distances from the knife-edges are equal.
Apinis placed vertically at the centre of the beam. The tip of the pin is viewed by a microscope. The
load on each hanger is increased in equal steps of m kg and the corresponding microscope readings
are noted. Similarly, readings are noted while unloading. The results are tabulated as follows :

the distance between the point of
a) are measured. The breadth b and the

E

Readings of the microscope

Load i or Mk
i Load increasing | Load decreasing Mean yI ¥

e

The mean elevation (v) of the centre for M kg is found. The length of the beam / between the

lmife-edges and q, the distance between the point of suspension of the load and the nearer knife-
®dge (4C=BD = a) are measured. The breadth b and the thickness d of the beam are also measured.
2 2 3
y= Wal _ = Mg‘;’ ( W = Mg and Ak* = ﬂ]
BEAK®  8E(bd*/12) 12

i
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Usmg the above formula, we can calculate the Young's modulus of the Materia| o
_ 0
Example 16 : Distinguish between uniform and non-uniform bending, the bt&rh

In uniform bending every element of the beam is bent with the same radius of ¢y
In non-uniform bending, R is not the same for all the elements in the beam, Wau,re.

Example 17 : Determine the Young s modulus of the material of a rod, if iy bent 1,
over two Anife-edges separated by a distance of 0.6 m and loads of 2.5 kg are lmng at () ];"yo"’n:_
from the knife-edges. The breadth and thickness of the rod are 0.025 m and 0.005 m resp é(~1' M ay,
clevation at the middle of the rod is 0.007 m. vely

IMgal’  3x2.5x9.8x0.18x (0.6)’
2bd’y 2 x0.025x (0.005)* x 0.007
=1.088 x 10" Nm2.

I Section of girders : A girder supported at its two ends as on the opposite walls of a room |,
under its own weight and/or, under the load placed above it. The middle portion gets depresséde#
depression (y) at the mid-point of a rectangular beam is proportional to WI*/Eb d®. For the depre;SI E

0

(») to be small for a given load (W), the length of the girder (/) should be small and its breadth (5
depth (&) and Young’s modulus for its material (£) must be large. ]‘

Due to depression, the upper parts of the beam above the neutral surface contract, while thog
below the neutral surface extend. Hence the stresses have a maximum value at the top and botion
and progressively decrease to zero as we approach the neutral surface from either face. Therefor
the upper and the lower surfaces of the beam must be stronger than the intervening part. That is },
the two surfaces of a girder or iron rails (for railway tracks etc.) are made much broader than [h;
rest of it, thus giving its cross-section the shape of the letter /. In this manner, material will be sayeq
without appreciably impairing its strength.

E:

1.22, SEARLE’S METHOD FOR DETERMINING E, G AND v

To determine E : Two identical cylindrical bars AB and CD are \ /
suspended from a rigid support by two parallel torsionless strings attached
to hooks at the mid-points of the bars. The centres of the bars are joined by
the short wire of length / whose elastic constants are required. When the ends
A and C of the bars are pulled closer to each other symmetrically, the wire 4

is bent into a circular arc [Fig. 1.23(/)]. When the bars are released, the bars R !
oscillate in the horizontal plane with supporting threads as axes. ’
\
Let 0 be the angular displacement of each bar at any instant during the AN 1a/C
oscillations. The radius of curvature of the wire at this instant is given by \\7’
R =1/2 0 [from Fig. 1:23 (N1 . Fig. 123 ()
Hence the bending moment of the wire is equal to the couple exerted
by it on each bar and is given by
AL 1 20
Ly ( 3T
/

The negative sign indicates that the restoring couple is directed towards the undisturbed positif

Here E = Young’s modulus of the material of the wire and
Ak? = geometrical moment of inertia of the wire of radius a about the neutral surface.
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Now, if'/1s the ML of each bar about the suspension thread (1 ¢, about an axis passing through
s C G- and perpendicular o its length) and & 0/df is the instantancous angular acceleration,

the couple acting on cach bar - ] . 0
dt”
do L0220 0 2EAK’
0 o g 2, 0 260
| dt { dt* 1l
This shows that the motion of each bar is simple harmonic and its time period
1= 2n [T
2 EAk
. , )
0]’ Tl‘ ~— 47‘[" ___1__;. Or E :ﬂ
2 EAk? 24k T
For a wire of circular cross-section of radius a,
AR = na'/a.
_ 8nll
- 2 4
" a

This period of oscillation T, is obtained by counting the time for 50 oscillations. The radius
of the wire a is measured by a screw gauge. Moment of inertia can be known trom the mass and
dimensions of the bars. If the bars are cylindrical, of mass M, length L and radius R, then

2 2
1= Ml£+ii|

~L12 -4
To determine G : One of the bars, say 4B, is clamped horizuntally in A 8
a stand and the other bar CD hangs vertically below it at the end of the wire | i’
[Fig. 1.23 (if)]. The bar CD is given a slight rotation and released; it executes
torsional oscillations about the wire. The period T, is found.
bow 6 ; ¢ )
ThenT,= 2 rt, [1 /c where ¢ = couple per unit twist in the wire = nGa*/2/, é 5

a being the radius of the wire and G the rigidity modulus of the material of the Fig. 1.23 (if)
wire. Substituting for ¢,

I, = 2n 1214 or T =4n’ ]'214
n Ga n Ga
G = 8;‘11.
Iy a

Thus G is calculated.
To determine v : We know that,
vy 2 @nll/T} a) e iy "
26 2@8nll/T}a*) 27

Substituting the values of T, and T,, the value of v is obtained.

The advantages of this method are : (i) Only a short length of the wire is required for the
€Xpenment.

(1) This experiment gives the value of v in terms of two accurately measurable quantities

T\ and T,. This eliminates altogether the chief source of error, namely, the measurement of the radius
(a) of the wire,

%
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1.23. KONIG’S METHOD —
The beam 1s supported on two knife-edges Scale
T

K, and K, separated by a distance /. Two plane C
mirrors m, and m, are fixed near the two ends

of the beam at equal distances beyond the knife-
edges. [Fig. 1.24 (a)]. The two plane mirrors face
each other and they are inclined slightly outwards
from the vertical.

An illuminated translucent scale and a
telescope (T') are arranged as shown. The reading
of a point C on the scale as reflected first by m, 2 Mg
and then by m, is viewed in the telescope. Let the : Fig. 1.24 (a)

load suspended at the mid-point of the beam be '
M. The beam is then bent and the bending is non-uniform. The mirrors at the ends are turned toward,

each other [Fig. 1.24 (b)]. Let the shift in the scale reading be s. The Young’s modulus of the mater
of the beam is then calculated from the relation
_ 3Mgl’ 2D +1L)
- 2bd’s
where [/ = Distance between the knife-edges
D = Distance between the scale and the remote mirror, m,
L = Distance between the two mirrors.
s = Shift in scale reading for a load of M kg
b = Breadth of the beam
d = Thickness of the beam
The formula can be deduced as explained below.
Let 8 be the angle through which each end of the beam has been turned due to loading. Then.
_owr
16 EAK?

K,

The mirrors m; and m, also turn through the
same angle 0 due to loading. In Fig. 1.24(b), m, and
m, represent the initial and m,’ and m,’ the displaced
positions of the mirrors. Originally, the image of the
scale division at C coincides with the cross-wire and
finally when the load is applied, H is seen to be in
coincidence with the cross-wire. For convenience in
evaluating 0, consider the rays of light to be reversed
in their path.

TQEC will be the original path. When m, is
turned through an angle 6 to the position m ', QF is
turned through 20 and strikes m,atG. Then EG =120,
The ray GH is turned through an angle 40, since, in
addition to QOF having moved through 20, m, itself

has turned through 6. Draw GK parallel to EC. Then,
£ZKGH =40 and CK = EG. KH =D 40

The total shift in scale reading = s = CK + K}

Fig. 1.24 (b)
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=EG+ KH

=120+ D 48

=(L+2D)26
Wi

But 0= TS
16 EAk-

w1l

Hence, 5§ =(L+2D)x2x ——
16 EAk-

_ WI*(L+2D)

E -
8 Ak~ s

Now Ak* = bd®/12 for a beam of rectangular cross-section and
W= Mg

el Mgl* (L+2D) 3Mgl* (2D + L)
8 (bd” /12)s 2bd’ s

(._.

CK = EG)



